
NASA-CR-19518t
SECA-TR-90-05

'

THE USE OF VARIATIONAL PRINCIPLES IN IMPROVING

COMPUTATIONAL FLUID DYNAMICS METHODOLOGY

Final Report, Contract NAS8-37408 _) ,/'_ /_D

Prepared for:

National Aeronautics & Space Administration

George C. Marshall Space Flight Center

Marshall Space Flight Center, AL 35812

By

Yen-Sen Chen

Richard C. Farmer

Jon A. Freeman

SECA, Inc.
3311 Bob Wallace Avenue

Suite 203

Huntsville, AL 35805

May, 1990

(_A:_A-C_-I951_l) THE USE OF

V'M<IATIONAL PRINCIPLES IN [_4PROVING
C{_{IPUTATI©_AL F[.U[_] C'YNA_4[CS

_4FTHO_?.,f}L(3CY Fin_l Report (SECA)

N94-71596

Unclas

Z9134 0207515



SECA-TR-90-05

PROJECT SUMMARY

The objective of this investigation was to produce a CFD

model which is computationally efficient, robust and readily

adaptable to complex geometries and which accurately describes

the physics of a gas mixture reacting with a specified set of

chemical kinetic rates. The primary application of this model is

expected to be the evaluation of advanced rocket motor designs

and the plumes associated with such motors. Analyses of the

space shuttle main engine and solid rocket motors flow fields

were also made.

The final result of this investigation is an advanced

version of the FDNS code which performs all of the steps

necessary to predict reacting gaseous propulsive flow fields.

Numerous propulsion related problems were analyzed and the

results were compared to other analyses or to test data in order

to validate this advanced code. The FDNS code provides the

methodology required to describe gas flows in advanced propulsion

systems sufficient for preliminary design studies.
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1.0 INTRODUCTION

I.i Scope of Study

A computational fluid dynamics model was developed to

accurately describe the physics of a gas mixture reacting with a

specified set of chemical kinetic rates. This model is also

computationally efficient, robust and readily adaptable to

complex geometries. The primary application of this model is

expected to be the evaluation of advanced rocket motor designs

and the plumes associated with such motors. Analyses of the

space shuttle main engine and solid rocket motors flow fields

were also completed. This study did not include multi-phase

effects associated with the SRM; although such effects could be

added. This investigation provides the methodology required to

describe gas flows in advanced propulsion systems sufficient for

preliminary design studies.

A secondary objective of this investigation was to provide

combustion analysis methodology compatible with sophisticated

Navier-Stokes solvers which are in current use but limited to

treatment of ideal gas flows. Many multidimensional gas flows

have been successfully analyzed. However, only a few of these

codes have been used to treat flows with combustion.

A further object of this study was to replace the piecemeal

solutions in rocket motor performance analysis and plume analysis

programs currently used in the JANNAF standard codes (Refs. 1 and

2) with analyses which are based on a robust Navier-Stokes solver

that has been modified to include an efficient kinetics

integration routine. The current JANNAF nozzle performance code

(Ref. 2) is a composite solution based on an MOC solution with

1
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viscous overlays for treating dissipative terms. For nozzle

flows, such methods lead to estimating individual performance
losses for the purposes of predicting specific impulse, without

attempting to accurately calculate the entire coupled flowfield.

1.2 Summary

The final result of this investigation is an advanced

version of the Finite Difference Navier-Stokes (FDNS) code (Ref.

3) which performs all of the steps necessary to predict reacting

gaseous propulsive flow fields. The physical phenomena which

govern these flows are listed in Table i. Some of these

phenomena may be treated independently with other codes, as

indicated in the table. Spray combustion may be treated with

KIVA (Ref. 4) and the results of the computation used as input to

the FDNS gas code developed in this study. Particulate effects

can be predicted with RAMP (Ref. 5) and/or with other codes which

are currently under development (Ref. 6), hence these effects

were not studied in this investigation. Plume radiation is

predicted from flowfield properties which are provided as input

to programs like SIRRM (Ref. 7) and ARC (Ref. 8). Since

radiation is uncoupled from the flowfield analysis, it was not

addressed in this investigation. The FDNS validation test cases

completed during this study are also listed in Table i.

Section 2.0 of this report describes the code development

and Section 3.0 presents the validation cases which have been

investigated. Table 1 also summarizes the validation cases which

were simulated. Section 4.0 addresses the attributes and

limitations of the code and indicates the applications for which

the code is applicable.

2



Table i. CFD Analysis of Rocket Motors and Plumes

FLOWPHENOMENA:

• Spray Analysis - from KIVA

• Multidimensional Compressible Flow*

• Inviscid, Laminar & Turbulent Flow*

Viscosity Options -

Laminar Viscosity

Algebraic Eddy Viscosity

Wall Boundary Conditions -

Slip

No Slip

Wall Functions

Steady & Transient Flow

• Subsonic, Transonic & Supersonic Flow*

• Chemistry*

• - Ideal or Real Gas

• - Equilibrium or Finite Rate

• . Hydrogen or Hydrocarbon Fuel

•- Large Scale Mixing Effects

• Particulate Flows - from RAMP

• Plume Radiation - from SIRRM

VALIDATION CASES INVESTIGATED:

• Laminar, Compressible Supersonic Flat

Plate Boundary Layer Flow

• SSME Nozzle Sea Level Static Test

Performance Simulation

• SSME Exhaust Plume Simulation

• Rocket Plume Impingement of Flat Plate

• Base Flow with Clustered Nozzles

• Supersonic Axisymmetric & 3-D Blunt Body
Flowfield Simulation

• Supersonic 3-D AFE Model Flowfield

Simulation

* Indicates Phenomena Investigated with FDNS

& Validated with Test Cases Shown Above

I

I

o

I
0
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2.0 ROCKET MOTOR VISCOUS/TURBULENTMULTICOMPONENT COMBUSTION

FLOWFIELD METHODOLOGY DEVELOPMENT

The original concept of this study was to apply the calculus

of variations to compressible fluid flow in order to develop

accurate, efficient computational fluid dynamics (CFD) algorithms

for production type analyses. The Phase I investigation revealed

that the mechanics of a variational solution involved a

predictor-corrector calculation in which a time advanced

approximation is corrected by requiring that certain constraint

equations be satisfied. SECA determined that the time

advancement step could most efficiently be accomplished with a

rigorous upwind algorithm which evaluated wave propagation along

characteristic directions. When this upwind method was

implemented, it was found that excellent solutions were obtained

without requiring additional correction steps. The balance of

the study was therefore devoted to utilizing and validating the

upwind, explicit algorithm (GWIND) and to developing an upwind,

implicit counterpart designed specifically for steady state

problems.

During the initial phase of this Phase II research study

other implicit algorithms were encountered that were further

along in development and better suited to the accomplishment of

the objectives of this effort. The most promising implicit

algorithm, the Finite Difference Navier-Stokes (FDNS) solver, was

chosen as the baseline methodology for this study. GWIND and

FDNS are described in the remainder of this section of the

report.
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2.1 Methodoloqy Developed In Phase I

The ALFA code which was developed by SECA under the Phase I

SBIR contract (Ref. 9) has been split into two codes LWIND and

GWIND applicable to liquid and gas flow problems, respectively.

The GWIND code, which was the original upwind explicit algorithm

considered as the basis for development of an implicit algorithm

in this Phase II SBIR contract, is described in detail in

Appendix A of this final report.

2.2 FDNS Implicit Alqorithm Formulation

The FDNS code solves the following form of the conservation

equations, including the Navier-Stokes equations, an energy

equation and two-equation turbulence models, in curvilinear

coordinates:

(l/J) (apq/at) = 8[-pUiq + /_ez_Gij(Sq/8_j)]/8_ i + Sq (i)

where q stands for the dependent variables (i.e. unity, the

velocity vectors, temperature, turbulence quantities, and mass

fractions of chemical species). J, U i and Gij represent the

Jacobian of the coordinate transformation, transformed

velocities, and diffusion metrics, respectively. They are

written as:

J = 8((,,;,[)/8(x,y,z)

U i = (uJJ) (8(i/Sxj)

Gij = (8(i/Sxk) (8(SSx_)/J



SECA-TR-90-05

_eff (= (_i + _t)/Uq) is the effective viscosity when the

turbulent eddy viscosity concept is employed to model turbulent

flows. The turbulence eddy viscosity is _t = pC,kZ/E, and C, and

aq denote turbulence modeling constants. _i is the laminar

viscosity. Source terms Sq for the continuity, momentum, energy

and species equations are given by:

Sq = (l/J)

0

-Px + V[_eff(Uj)x] - (2/3)(_effVUj)x

-py + V[_eff(U_)y ] - (2/3) (_effVU_)y

-Pz + V[_eff(Uj)z] - (2/3)(_sffVUj)z

Dp/Dt + ¢ + 7.JnCpnVT - 7.hnWn

P (Pr - e)

p (6/k) (CIPr-Czc+C3T*C4pr2/6)

w_

The equation of state for an ideal gas or a real gas is used

to close the above system of equations. These equations were

solved with the pressure based FDNS solver, which is discussed in

detail in Refs. 3 & i0.

A pressure based solution method is employed in FDNS so that

a wide range of flow speeds can be analyzed with the same code.

Successful results of viscous flow computations using pressure

based methods have been reported (Refs. 3, i0, ii). For high
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speed flow cases, a hyperbolic pressure correction equation is
retained by perturbing the density in the mass conservation

equation. This provides a smooth transition from low speed to

high speed flow. For time accuracy, a time-centered, time-

marching procedure with a multiple pressure corrector algorithm

is employed. This method provides numerical efficiency for time-
dependent flow problems.

To solve the system of nonlinear coupled partial

differential equations, Eq. (2), finite difference approximations

are used to establish a system of linearized algebraic equations.

A relaxation solution procedure is then employed to couple the
equations. First, Eq. (2) is discretized in time with a time-

centered (Crank-Nicholson) scheme. That is,

(i/J_t) [(pq)n+1_ (pq)n] = (Rq=+1+ Rq)/2 (2)

where the superscript n denotes the current time level. If a

sub-iteration procedure, designated by a superscript k, within a

timestep is applied, the following linearization can be

incorporated:

(pq)n+1 = (pq)k + p_ _

Rq n+1 = (aRq/aq) k _ + Rq k

With the above linearization, the final form of the time-marching

scheme can be written as:

[(p/J_t) n - (aRq/aq) k] _

=- (i/J_t) [(pq)k _ (pq)n] + (Rqk + Rqn)/2
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The solution at time level n+l is then updated by:

q_+_= q_+_= qk + nqk

When k = 1 is selected, a non-iterative time-marching scheme is

used. As reported in Ref. 3, the non-iterative option with a
multi-corrector solution method can provide time accurate

solutions for transient flow problems. This multi-corrector

procedure is described briefly below.

A simplified momentum equation is combined with the

continuity equation to form a pressure correction equation. This
pressure correction equation exhibits elliptical behavior for low

speed flow and becomes continuously more hyperbolic as flow speed

increases. The simplified momentum equation can be written as:

apui/_t _ - v p'

or, in discrete form,

u' i _- (At/p) Vp' (3)

where the superscript ' denotes perturbations. The velocity and

density fields in the continuity equation are then perturbed to

form a correction equation. That is,

v(pui)n÷1= V[(pn + p')(uni + u'_)]

By neglecting the p'u' i terms, the following equation results.

v(uip') + v(pu'i) = - V(pu_)_ (4)

8
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Substituting Eq. (3) into Eq. (4) and letting ?' = p'/RT, where R

and T represent gas constant and temperature, respectively, the

final form of the pressure correction equation is obtained.

v[(u±/RT)p'] - v(_t vp') = - V(pui) n (5)

Equation (5) has the form of a transport equation with convection

and diffusion terms. Upwind treatment can be used to model the

left hand side of Eq. (5). A dissipation term is also added to

the right hand side of Eq. (5) to provide smooth shock solutions.

Using the solution of Eq. (5), the pressure and velocity fields

are updated and the density field is then updated by using the

equation of state. This corrector procedure is repeated several

times (usually 4 times are sufficient) before marching to the

next time step. This procedure insures that the mass

conservation condition is satisfied for each time step. This

represents the multi-corrector solution procedure. This method

requires one predictor step and less than four corrector steps to

provide numerical efficiency for transient flow computations.

2.2.1 FDNS Finite-Rate/Equilibrium Chemistry Models

a. The PARASOL Finite Rate Chemistry Algorithm for Steady and

Unsteady Reacting Flows

The prediction of a non-equilibrium, reacting flowfield is a

difficult computational task. In such a flow, the system of

chemistry equations is extremely stiff due to the varying time

constants of the competing chemical reactions. The stiffness of

the chemical system will usually require very small time and/or

spatial steps and also cause accuracy and stability problems in

9
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the flow calculations. SECA engineers have developed an

efficient finite rate chemistry algorithm (PARASOL) for the

description of the highly complicated chemistry systems in

reacting flow environments (Ref. 12). The computational analysis
is efficient due to a unique treatment of the chemistry source

terms. The PARASOLalgorithm is available as an option in
SECA's state-of-the-art flow analysis code, FDNS.

PARASOLis an implicit, unconditionally stable, accurate,

and fast stiff chemistry algorithm. This unique algorithm
includes local linearization of the chemical differential

equations, and a rational approximation to the matrix exponential

of the exact solution to the resulting linear differential

equations. Diagonal Pade' approximants are used for the rational
approximation and force the satisfaction of the unconditional

stability criteria. Calculation of the eigenvalues of the

species Jacobians is not required. Unconditional stability means

that large integration steps can be taken, and the step size is

limited only by the consideration of truncation and round-off

errors. No iterative correction nor exponential fit of the

solution is needed since this is a one sweep procedure and the

matrix exponential of the exact solution is being approximated

rationally. The formation of the species Jacobian is automated,

and the calculation of the Jacobian pays off in improved

stability and computational speed. LINPACK is used to further

speed up the matrix evaluation.

The basic governing equations employed to describe the non-

equilibrium, chemically reacting flow in generalized three

dimensional coordinates are:

i0
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(l/J) (apq/at) = sq + 7. (a[-pUq + /_G(aq/a{)]/a_) (6)

where q represents species concentration, velocities, or energy

in the governing equations. J is the Jacobian metric, _ is a

generalized curvilinear coordinate, and G is the metric

coefficient. In Eq. (6) p is density, t is time, and Sq

represents the source terms of the governing equations. The

summation is over each of the three spatial dimensions.

Consider a general chemical system of n species undergoing m

simultaneous elementary reactions:

n n

7 u ikAi = _ u ikAi, k=l,2, ..... m (7)
i=l i=l

where v ik, and u ik are the stoichiometric coefficients, and A i is

the chemical symbol of the ith species. The source term Sqi for

volumetric chemical reaction mass production rate of species i

is:

Sqi = p (d_i/dt)

--_i ' n n urk ]= M i (u ik-v ik)[K_ n (?yr) _rk - Kbk n (PYr) ,
k r=l r=l

i=I,2, ..... n (8)

where Yr = _r/Mr, _r is the mass fraction of species r and M r is

the molecular weight of species r.

The reaction rates are functions of temperature ,T, and are

usually expressed in a general Arrhenius form. For example, the

forward reaction rate can be expressed as:

Kf = CTSexp(-E/RT) (9)

ii
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where C is the Arrhenius constant, s is the temperature
dependency coefficient, E is the activation energy and R is the

universal gas constant. Eq. (8) is a system of coupled,

nonlinear ordinary differential equations. The stiffness of the

chemistry system comes from the widely disparate time constants

in the nonlinear terms in Eq. (8). Moretti (Ref. 13) showed that

stiffness results from drastic changes of local eigenvalues which
occur near a flame front.

Two general approaches can be used to solve the above

reacting flow system: the full solution approach or the chemistry
split/ chemistry factorization approach. The full solution

approach advances the flow time step and the chemistry time step

with the same step size. However, this procedure is not

efficient since the stiff chemistry time step is always smaller
than the flow step. The whole calculation would then be forced

to advance with the smallest chemistry time step. The chemistry

splitting simply means several chemistry steps are allowed within

one flow step. A recent study of hydrogen/air reacting flow used

a preconditioning matrix for advancing the calculation in larger
time steps. The computational time steps, however, were still

limited to the small chemistry time steps. It has been shown

that the computational speed of the chemistry split approach

using a stiff chemistry solver is always faster than that of the

full solution, and the final solutions of each are very similar.

An obvious computational strategy for reacting flow is to use the

chemistry split approach and to develop an efficient finite rate

chemistry algorithm for the integration of Eq. (6). Notice that

in the chemistry split approach, the chemistry source terms are

coupled with all the gas dynamic flow equations.

12
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In theory, many standard explicit and implicit numerical

methods can be used to integrate the chemistry system of Eq. (8).

However, explicit methods generally require smaller time steps;
whereas, implicit methods are generally more stable and allow

larger integration steps to be taken within the limitation

imposed by truncation and round-off errors. Unfortunately, the

merits of the implicit method are dependent upon the form of the

differential equations and the amplification factor; the method

is not always convergent for stiff chemistry equations.

PARASOL is an unconditionally stable implicit scheme and is

most suitable for integrating the finite rate chemistry

equations. It is based on the formation of Pade' approximants to

accelerate the convergence of a power series. This technique has

been used extensively in physics and chemistry. However, its

application in engineering has been limited, particularly in the

finite rate chemistry field. Although an early study

successfully applied the technique to combusting flow problems

(Ref. 14), the method has largely been lost in the multitude of

other published finite rate chemistry methods. The basic

development of the PARASOL algorithm in solving the finite rate

chemistry problems is presented below, starting with Eq. (6) cast

in a general form.

dy/dt = f(y. T, p) (10)

Nonlinear instability will occur if Eq. (i0) were to be

solved directly with even modest time steps. Expanding Eq. (i0)

through the first order terms, the linearized equation becomes:

13
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dy/dt = f(Yo, To, Po) + (af/ay)o&Y + (af/aT)o&T + (af/ap)o_p

+ O(Ay 2, AT 2, A# 2) (ii)

where y, f, af/aT and af/a# are column vectors, a f/ay is a

species Jacobian matrix, and the subscript o stands for the

initial value. Notice the neglected higher derivative terms

involve &y2, _T 2 and 4# 2. The density term can be eliminated

through the use of the equation of state. If the temperature

term is eliminated by assuming that the temperature change is

small within an integration step, Eq. (ii) can be simplified as:

dy/dt = f(Yo, To, Po) + (af/ay)oAY + o(_Y 2) (12)

Conceptionally, the AT term could be retained in the following

development, but this has been found to be unnecessary. Equation

(12) is a system of n linear ordinary differential equations with

constant coefficients and can be regrouped as:

dy/dt = A y(t) + B (13)

where A is a n x n species Jacobian matrix and B is a n element

column vector. The formal solution of Eq. (13) at t=h is

y(h) = exp(hA)(Yo + A-1B) - A-1B (14)

In Eq. (14), the matrix exponential term can not be evaluated

directly but may be approximated with polynomials, and the form

of the approximation will determine whether it is accurate,

efficient and stable. For a family of unconditionally stable

schemes, the Pade' approximants are found to be more efficient

than the Hermitian approximants. The Pade' approximation of the

matrix exponential of Eq. (14) can be expressed as:

14
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exp(hA) = Q-ip + O(hA)P+_I (15)

where:

p (p + q - k)!p!

P = Z (hA)k (16)

k=0 (p + q) !k! (q - k) !

and

q (p + q - k)!q!
Q = 7 (-hA) _ (17)

k=0 (p + q) !k! (q - k) !

and P and Q are Pade' approximants in their pth and qth order,

respectively. The truncation error means that these formula must

agree with the exponential power series for at least p + q + 1

terms. Substituting the approximants into Eq. (14), the

integration formula becomes:

y(h) = Q-1[Py o + (P - Q)A-IB] (18)

Eq. (18) includes many types of single step integration

methods and not all of them are stable. The Euler explicit

method, which has been shown to be partially stable, is a special

case of Eq. (18) with P = I + hA and Q = I (p = 1 and q = 0).

While P = I and Q = I - hA (p = 0 and q = i) is the stable Euler

implicit formula. Diagonal Pade' approximants (q = p) have the

smallest truncation error of those Pade' approximants and are A-

stable. The approximation of the matrix exponential by diagonal

Pade' approximants is called Pade' Rational approximation. The

algorithm of applying Pade' Rational approximation to the formal

solution of a system of finite rate chemistry equations has been

named Pade' Rational Solution (PARASOL) by SECA.

The integration formula can be derived for any order of

15
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truncation. For the cases of p = q = 1 , the following solution

is obtained for Eq. (13):

y(h) = (I - 0.5 hA)-1[(I + 0.5 hA)y o + hB] (19)

The truncation error is O(h3) for Eq. (14), and is O(h 5) for

p = q = 2.

Mathematically, a network of equations is stable if the

eigenvalues of the coefficient matrix of its locally linear

representation have negative real parts. Unconditional stability

means the numerical algorithm is stable for any step size with
the restriction that errors introduced by truncation and roundoff

may accumulate but not grow in an unbounded manner. To analyze

the stability criteria of PARASOL, Eq. (18) can be written in a

simpler form after the method is applied to its n+l th step:

vn+1 = Q-Ip_n + C (20)

where _ = y(nh). The true solution may be expressed as:

yn+1 = Q-Ipyn + C + rn+1 (21)

where 7 n+l is the truncation error. The error at each step will

be the difference between the true solution and the integrated

solution:

en = yn _ V n (22)

Subtracting Eq. (20) from Eq. (21), we obtain

en+1 = (Q-ip) en + rn+1 (23)

16
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The truncation error can be ignored and the propagation of
the error from the source term at the first step, eo, to the

error at the nth step can be represented as:

en = (Q-Ip)neo (24)

The error will grow or decay according to the amplification
matrix (Q-Ip). From the definition of stability, when the

eigenvalues of the matrix A have negative real parts, the error

must decrease as the number of integration steps increase. The
error can only decrease if the absolute eigenvalue of the

amplification matrix is less than one. For every eigenvalue of

the matrix A, there is a corresponding eigenvalue for the
amplification matrix. The stability criteria then requires:

IP(-I) I < IQ(I-) I (25)

For the complex eigenvalue ! = hA = -_ + _i (_ > 0), the complex

eigenvalues for P and Q of Eq. (19) are

P(!) = (i - 0.5 _) + 0.5 _i (26)

and

Q(I_) = (i + 0.5 _) - 0.5 _i (27)

Equation (26) and Eq. (27) satisfy the stability criteria.

Since the stepsize h does not explicitly enter into the analysis,

PARASOLis unconditionally stable for all step sizes. The above

stability criteria can be easily applied to higher order diagonal

Pade' approximants.

17
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PARASOLin its current status, has been successfully applied
to a number of chemistry systems such as: a transient combustor

simulation (Ref. 15), the interaction with a stochastic reactor

(Ref. 16), and a hydrogen/air reactive dump combustor using the
FDNS code (Ref. 12). While comparing to TRW's predictor-

corrector equation based on the same number of matrix operations,

PARASOL's truncation error is O(h 5) versus O(h 3) for TRW's
algorithm.

One of the more popular algorithms for solving stiff systems
of ordinary differential equations is that developed by Gear,

which was later adapted specifically for finite rate chemistry in

the code GCKP. These schemes employ Adams' explicit method of

variable order to solve nonstiff equations and implicit formulas
to solve the stiff equations. GCKP84 is a revised version of

GCKP that used an implicit predictor-corrector procedure for

systems of stiff differential equations. Hindmarsh generalized

the GEAR algorithms and developed a series of stiff ODE solvers

like EPISODE and LSODE. CREKID used a two part predictor-

corrector and an exponentially fitted trapezoidal scheme. CHEMEQ

also applied predictor-corrector methods to normal ODE's, but

used an asymptotic integration method for the equations which are

determined to be stiff. It is noted that separating the system

of equations into nonstiff and stiff parts and treating them

differently resulted in a mass conservation problem. A recent

study has compared the performance of the above finite rate

packages on a twelve step, H2-O2-CO-N 2 reaction system.

Performance was measured by CPU computation times required for a

range of error tolerance values. The error tolerance is the

maximum allowable change of specified dependent variables in an

integration step while still maintaining the system stability and

accuracy. The error tolerance can be related to species
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concentrations, temperature, or density. A better finite rate

chemistry algorithm will have shorter CPU times at hiqher error

tolerance values. Figure 1 shows a comparison of the performance

of several algorithms reported in that study, and the performance

obtained by SECA using PARASOL on the same test case. Notice all

the codes tested were designed for stiff chemistry systems. It

can be seen that CHEMEQ is the slowest scheme tested, although

CHEMEQ is probably much faster than a classical second order

predictor-corrector scheme. GCKP84 and EPISODE do not run for

error tolerance greater than 1.0E-6. This makes them highly

inefficient when used with gas dynamic equations since small

chemistry steps must be taken. LSODE and CREKID are the faster

ones; CREKID has a slight advantage over the LSODE near the

higher error tolerance. CREKID is faster than LSODE because it

uses old Jacobians and a filter mechanism. PARASOL has two

curves plotted in Fig. i, the upper one is the regular PARASOL

while the lower one is a diagonalized version used during

numerical experimentation. Both PARASOL curves show longer CPU

time at lower tolerance values and shorter CPU time at higher

tolerance values than those of CREKID and LSODE. It should be

pointed out that the regular PARASOL curve is consistently lower

than that of CREKID for tolerance greater than 4.0E-4. The CPU

time required for regular PARASOL at 0.01 tolerance is half of

that required by CREKID. SECA has collected all of the codes

used in the comparisons shown in Fig. 1 for use in future

kinetics studies.

Two points need to be made in regard to the merits of

PARASOL. Firstly, the PARASOL can be further improved, e.g., by

using filter schemes. Secondly, the computational strategy for

reacting flow calculations is to set the tolerance level as high

as possible, since fewer chemistry steps must be taken within one

flow step; hence, the advantage of PARASOL is evident.
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b. Special Chemistry Models for Steady State Reacting Flows

An efficient equilibrium chemistry procedure based on the

method of equilibrium constants and an accelerated finite rate

chemistry solver have been developed and added as options to the

FDNS code. The equilibrium species concentrations were

calculated with the equilibrium constant method. A four-reaction

mechanism plus two element balance equations were used for the

H2-O 2 system (i.e. six equations for six species). For the

finite rate chemistry procedure, the species concentrations were

solved by a set of species continuity equations with source terms

calculated based on the forward and backward reaction rate

constants of an elementary reaction set. The forward reaction

rate constants in Arrhenius form were obtained from known data.

Equilibrium constants calculated by using Gibbs free energy were

used to evaluate the backward rate constants.

In order to further reduce the stiffness problem insolving

the finite-rate species equations with very strong source terms,

two methods were used to accelerate the FDNS relaxation solution

procedures. In the first approach, the source terms of species

equations were split into an implicit and an explicit part

associated with sink and source terms, respectively. This

provides about the same magnitude for the left and the right hand

sides of the transport equations. The second method utilized a

different time step size for the species equations to reduce the

extent of the chemical reaction within a time step. Both methods

were found to be very efficient in obtaining steady state

solutions. The procedures described above for the equilibrium

and finite rate chemistry steady state flow solver are summarized

below. The H2-O 2 system is discussed as an example.
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c. Equilibrium Chemistry Model

For Hz-O2 chemical system, the global reaction with six
species are written as:

AH 2 + BO 2 = n_H20 + n202 + n3H 2 + n40 + nsH + n60H

The following element balance relations hold:

H: 2A = 2n I + 2n 3 + n 5 + n 6 (28)

O: 2B = n I + 2n 2 + n 4 + n 6 (29)

The following elementary reactions to provide the additional four

equations for solutions of the six-species system.

0.502 = O

0.5H 2 = H

0.5H 2 + 0.502 = OH

H 2 + 0.502 -- H20

Using the equilibrium constants, the following algebraic

equations can be obtained.

n I = (n/p)-°.Sn3n2°.SK4

n 4 = (n/p) °'Sn2°SK I

n S = (n/p) °'Sn3°'SK2

n 6 = n2°-Sn3°-SK3

(30)

(3].)

(32)

(33)

where n = Z n i is the molar density and p is the local pressure.

KI, K2, K3, and K 4 are equilibrium constants which are calculated

22



SECA-TR-90-05

with the Gibbs free energy, f.

KI = exp{-(0-5f02 - f0) }
K2 = exp{--(0.5fH2 -- fH))

K3 = exp{--(O.5fH2 + 0.5f02 -- fOH))
K4 = exp{-(fH2 + 0-5f02 - fH20)}

Equations (28) through (33) can be solved for every grid point by

using Newton's iteration procedure.

d. Accelerated Finite Rate Chemistry Model

At best, finite-rate combustion calculations require much

computation time. The PARASOL algorithm was used previously for

analyzing the transient operation of the fuel preburner in the

SSME (Ref. 15). However, when either extremely high pressures or

temperatures cause the reaction rates to be very fast, finite-

rate calculations can require very small time steps. For steady-

state, finite-rate CFD calculations can be accelerated by the

following method. This method was developed under contract NAS8-

38454 (Ref. 16) by SECA.

A general system of chemical reactions can be written as in

Eq. (7), and the net rate of change in the molar concentration of

species i due to reactions j (Xij) can be written as in Eq. (8).

The forward and backward reaction rates are related by:

Kej -- Kfj/Kbj
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where:

Kej = equilibrium constant

= (i/RT)Z(_iJ'-_iJ)exp(Z(fi,vij, - f±vij))

fi = Gibbs free energy of species i

and the species production rate, _i, (in terms of mass fraction)

is calculated by summing over all reactions.

_ = Mwi .ZX_j
J

The i-th species continuity equation can be written:

p Dt_ i - V [ (_eff/(_) V67i] _- O_ i

where _eff = effective turbulent eddy viscosity

o_ = Schmidt number for turbulent diffusion

As mentioned previously, this set of species continuity equations

can be solved by: (i) splitting _i into two terms, that is

O) i = (_0i) explicit- (tOi)implicit

where (_i)implioit = (a_i/a_i)A_i

with the implicit part moved over to the left hand side of the

equations; or (2) employing a small time step size based on the

assigned tolerance for species correction within a time step,

that is

(At) chemistry -----P (A0_i) assiEneJtOi
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The second method was selected for the test cases given in

this report. This is due to the basic feature of this method

that all species at a given point in space evolve consistently

according to rates computed explicitly. The only disadvantage of

this method is that the time step size is non-uniform in space
which limits its applicability to steady-state flow problems

only.

After the chemistry source terms are evaluated for known

flow conditions and species concentrations given by the previous

time level, the system of species continuity equations are solved

using the source-term-limited time step size for each grid point.
A Euler implicit time marching scheme is employed with implicit

convection and diffusion terms. This method is unconditionally

stable and is suitable for steady-state solutions. The species

continuity equations are solved one by one using a modified
Stone's strongly implicit matrix solver.

In summary, efficient procedures for solving equilibrium and

finite-rate chemistry systems have been incorporated into the

FDNS code. Applications of these methods to SSME nozzle steady
state flow test cases which are described in Section 3.0 of this

report have shown good accuracy compared with measured data.

Only 30 to 50 percent more CPU time than non-reacting cases is

required in the present investigations.

2.2.2 FDNS Turbulence Models

The two-equation k-E turbulence modeling approach is

employed in FDNS. The general form of two-equation k-E

turbulence models including model constants and damping functions
from several models are shown in Table 2. It has been shown that
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Table 2. Two Equation k-( Turbulence Models

The general form of two-equation k-_ turbulence models can
be written as:

pDtk = V[ (_+_U/Ok)Vk] + p(P:-E+D)

pDt_ = V[(_+_u/a,)V6] + p[(z/k) (CIfIP=-C2fzE)+E) ]

where the turbulent viscosity and kinetic energy production rate

are given by:

_t=p C,f,k2/

P== (;_t/P) [2 (UxZ+VyZ+W2)% + (Vx+Uy) z+ (wy+Vz) z+ (Uz+Wx) 2_
(2/3) (Ux+Vy+Wz) ]

D and E are defined by the following parameters:

R T = turbulent Reynolds number = pk2/_6

P_ = dimensionless distance from the wall = pyJ(k)/_

+

y = another dimensionless distance from the wall

= pyJ(_w/p)/_

Also note: A=J (10vk/E)

p+= (_/p2u_3) (asp),,

u_=J (_J p )

The turbulence model constants, C_, C I and C2, are tuned

against basic turbulent flows (e.g. homogeneous turbulence, wall

equilibrium conditions, planar and circular jets, etc.). The

turbulence Schmidt numbers, o k and o_, are determined based on

the spreading rate of k and _ which satisfy the consistency

condition.

The model constants and damping functions used in several

k-£ models are summarized in subsequent pages of this table.
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Table 2. Turbulence Models, cont. p.l

Model standard

k_,_w B.C. wall

C_ 0.09

C I I. 44

C z 1.92

ak I. 0

u, 1.3

f_ 1.0

fl 1.0

f2 I. 0

D 0.0

E 0.0

functions

extended Launder-

Chen-Kim Sharma

wall functions k_ = _w = 0

0.09 0.09

i. 15+0.25Min{ 3, Pr/6 } 1.44

1.90 1.92

0.8927 1.0

1.15 1.3

i. 0 exp{-3.4 (I+RT/50) -2}

1.0 1.0

i. 0 i-0.3exp{-RT 2}

0.0 -2u (a_/k) 2

0.0 2uu t (a_U) 2

Model Hassid-

Poreh

_,Ew B.C. _ = _. = 0

C_ O. 09

C I 1.45

C z 2 •0

o k I. 0

O_ 1.3

f, l-exp{-0.0015R_}

fl I. 0

f2 i- 0.3 exp { -R_ z )

D -2uk/y 2

E -2v (ax./_) =

Ho f fman Dut oya-

Michard

k,.= _.= o k.,= _.= o

0.09 0.09

1.81 1.35

2.0 2.0

2.0 0.9

3.0 0.95

exp{-l.75/(l+R_/50) ) l-0.86exp{-(RJ600)2}

I. 0 i-0.04exp{ - (RT/50) 2}+ (l/2y) 2

i-0.3exp{-R_ 2} i-0.3exp{- (R_/50) 2}_0.08 (I/y) 2

- (v/y) _k -2v (a/k) z

0.0 -C2f 2(_D/k) 2
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Table 2. Turbulence Models, cont. p.2

Model: Reynolds

k_,_wB.C. k_=0, _.=wa_k

C, 0. 084

C I 1.0

C 2 1.83

_k i. 69

O_ 1.3

f_ l-exp{-0. 0198R 7)

fl 1.0

f2 f_[ i-0.3exp( -RT2/9 ) ]

D 0.0

E 0.0

Chien Lam-

Bremhorst

k_ = _w = 0 k_=O, _.=_8_k

0.09 0.09

1.35 1.44

1.80 1.92

1.0 1.0

1.3 1.3

l-exp{-0.0115y ÷) [I-exp{-O.0165P_)]2(I+20.5/RT)

1.0 I+ (0.05/f_) 3

l-0.22exp(-R_2/36} l-exp{-R_ 2)

-2vk/y 2 O. 0

-2v(£/y2)exp{-0.5y+) 0.0

Model Nagano-

Hishida

k_,Cw B.C. k_ = Ew = 0

C_ 0.09

C l 1.45

C 2 i. 90

a k i. 0

o, 1.3

f, [!-exp(-y+/26 • 5) ]2

fl 1.0

f2 i- 0.3 exp { -R_ 2 )

o -2_ (a_k) 2

E vvt(l-f _) (a_U) 2

Lai-So-

Hwang

k_= _,= 0

0.09

1.35

1.80

1.0

1.3

l-exp { -0. Ol13y + (1-4. 372p ÷) )

1.0

i- (2/9 ) exp ( -RT2/36 )

-2vk/y 2

-2v (_/yZ) exp( -0.5y ÷)
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in the extended k-6 model (Ref. 18), two time scales (the

production rate time scale, k/Pz, and the dissipation rate time

scale, k/z) can be included in the dissipation rate equation to

cause the dissipation rate to respond more effectively to the

mean strain than it does in the standard k-c model. The net

effect of the energy transfer function is to enhance the

development of E when the mean strain is strong or the production

rate is large, and the generation of _ is suppressed if the

converse is true. The source term for the dissipation rate

equation is:

S, = p (CiPr£/k - C262/k + C3Pr2/k) (34)

The last term represents the energy transfer from large scale

turbulence to small scale turbulence and is controlled by the

production rate and the dissipation rate time scales. This

formulation enables the dissipation rate to respond to the mean

flow field more rapidly so as to control the development of the

turbulent kinetic energy more effectively. It has proved to be

effective for isothermal flows such as boundary layers and

general elliptic type flows. For non-isothermal flows such as a

chemically reacting flow in a ramjet dump combustor

configuration, the isothermal standard k-6 and extended k-_

models predict too rapid a decay of the centerline kinetic energy

profile. The extended k-£ model predicts a slower centerline

velocity decay than the standard k-[ model. It was therefore

postulated that a temperature dependent term could be added to

the last term of Eq. (34) for non-isothermal flows, without

changing the modeling constants already determined for the

isothermal turbulent flows. The value of the temperature

dependency term is unity for isothermal flows and does not effect

the turbulent flowfield. The rationale behind this new

29



SECA-TR-90-05

r

turbulence model [k-_{T}] is that the temperature rise in the

reacting flow causes an increase in the dissipation rate, and the

net effect is a reduced effective viscosity. The final expression

for the dissipation rate equation source term is:

S, = p(CiPre/k - C2e2/k + C3(T*)c4pr2/k ) (35)

The final values of these model constants for the k-£{T}

turbulence model are: CI=I.15 , C2=1.9 , C3=0.25 and C4=0.6.

Large scale turbulence effects can be introduced into the

species continuity equations with probability distribution

functions (PDF) to simulate unmixedness effects, as described in

Ref. 16, if the need arises.

2.2.3 FDNS Grid Options

Computational grids for FDNS may be generated by an external

grid generator such as the GWIND grid module. GRID is an

algebraic grid generator capable of creating 2-D, axisymmetric

and 3-D grids over complex fluid flow regions. The module uses a

library of edge and surface shape functions which may be

bilinearly or trilinearly blended to obtain a body fitted

coordinate system.

The shape functions currently in the module include;

straight edges, a set of fixed points, circular arcs, elliptical

arcs, parabolic arcs, and helical arcs. Surface shapes available

are flat plates, cylindrical surfaces, cones, spheres, biconics

and edges of revolution.
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Each edge of the region may consist of more than one shape

and each surface may consist of segments of different shapes. In
addition, intermediate edges may be imposed on any of the

surfaces to facilitate modeling complex features or the geometry.

Other helpful features of the module are the capability to

employ uneven nodal distributions via a quadratic stretching
function and the capability to divide a complex geometry into

separate, distinct regions to be mated in the pre-processor
module.

An example of a 3-D grid for FDNS produced by the GWIND GRID
module is shown in Section 3.4.3 of this report in Fig. 57.

Grids for FDNS may also be provided by other interactive grid
generators, such as GENIE.

2.2.4 FDNS Boundary Condition Options

Various types of boundary conditions can be incorporated in

the FDNS code by simply changing the input data for boundary

control parameters. These boundary types are: supersonic inlet,

subsonic inlet, outlet boundary, symmetry boundary, free surface

boundary, cyclic boundary, and solid wall boundary. For

supersonic inlet boundaries, all flow conditions are fixed unless

transient inlet boundary conditions are required. For subsonic

internal flow inlet boundaries, v- & w-velocities and pressure

wave characteristics are extrapolated upstream. At subsonic

external in-flow boundary, only the v- & w-velocity components

are extrapolated. Along the outlet boundary, all variables are

extrapolated unless a fixed pressure subsonic exit boundary

condition is specified. For symmetry planes, zero gradient

boundary conditions are applied for all scalars and vectors
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parallel to the symmetry planes. Along free boundaries, a zero
gradient condition is applied to all variables. For cyclic

boundary conditions, the FDNS solver employs overlapping cyclic

boundaries. This method is also used for multi-zone arrange-

ments. For the solid wall boundaries, a non-slip boundary

condition is applied for the momentum equations and the pressure
field is assumed to have a zero gradient normal to the walls.

Either isothermal or adiabatic wall boundary conditions can be

used for the energy equation. In the case of turbulent flow

computations, the conventional wall function approach is
employed.

2.2.5 FDNS Graphics Output Options

Output from FDNS flowfield solutions can be displayed
graphically in the form of X vs. Y or contour plots. Plotting

software is machine dependent. The plotted output from FDNS

which is presented in Section 3 of this report was generated on

either the NASA/MSFC IBM 3084 front end to the CRAY X-MP4 or the

VAX 11/785 computers. That is, the external plot programs that

are currently used to plot FDNS results use PLOT i0 software and

are operational on the IBM 3084 and VAX 11/785 computers.
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3.0 FDNS CODEVALIDATION

A variety of gaseous flows were studied to establish the

validity of the FDNS code. Heat transfer effects, multiple speed

regimes, and the chemistry models were studied to test FDNS for a
wide range of applications. The results of the specific cases

investigated will be presented and discussed in this section.

3.1 Laminar Compressible Boundary Layer Flow

3.1.1 Heat Transfer Characteristics

Wall heat transfer characteristics are presented in this

section prior to the description of the boundary layer validation

test cases. For simple flows (e.g. flat plate boundary layer

flows), similarity solutions can be used for data comparisons.

For instance, the Reynolds analogy factor, S, for perfect gas

with constant property is given in Ref. 19 as:

S = CZ/(2Ch) = p Z/3 = 0.8033,

where:

for flat-plate boundary

layers with freestream Mach

number M.

Cf = skin friction coefficient

C h = qw/(0.2 r Qref M2)

Pr = Prandtl number = 0.72

qw = heat flux at wall

Qref = Cp(freestream density * velocity)(wall temp.)

r = temperature recovery factor = Pr°'5

With Sutherland's viscosity law, it has been shown in Ref. 20

that S and r decrease with increasing freestream Mach number.

33



SECA-TR-90-05

This temperature dependent viscosity effect is not considered in

the following flat-plate boundary layer heat transfer analyses.

For blunt body heat transfer problems, however, a

temperature-viscosity function for air at low pressure and low

temperature is employed based on Sutherland's formula. That is,

Viscosity = 0.312986 (Viscosity)ref TI 5/(T + 198)

with a reference temperature of 95.89°R. The local fluid

temperature is represented by T. This formula is suitable for

the wind tunnel operating conditions reported in Refs. 21 - 23.

The measured pressure and heat transfer data in these references

are the basis of comparisons for the blunt body test cases

presented in Section 3.4 of this report. One useful correlation

developed by Fay and Riddell (Ref. 19) for blunt body stagnation

point heat transfer at supersonic speed is also used for data

verification. This correlation is given as:

qw = C Pr-° 6(p _ X) e°'5[(p_)w/(P_)e]°'l(s e - Hw)

where the subscript e stands for the conditions behind the shock.

C = 0.763, for a sphere.

C = 0.57, for a cylinder.

K = 1.14 Uo/D, for cylinder or sphere at freestream Mach

number greater than 4.

Based on this correlation, the stagnation point Stanton number

can be written as:

St = qw/[ (pU)o(Ht - H_) ]
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St = C Pr-° 6[(l.14/Re)(p_)e/(p#_)o]° 5[(p_)w/(p_)e] °'I (He-Hw)/(Ht-Hw)

3.1.2 Laminar, Compressible Boundary Layer Flow FDNS Validation
Test Cases

These 2-D planar test cases consider an ideal gas, and the
laminar, compressible boundary layer developed along a flat

plate. The free stream Mach numbers considered are 4, 6, 8 and

i0, the flow Reynolds number is 6.2E+5 per meter and the wall
temperature is assumed to be isothermal at free stream

temperature. The Prandtl number is assumed to be 0.72. The

computational domain has a size of 1.0 x 0.02 with the inflow

boundary layer thickness of 0.001. A grid size of 61 x 21, with

more grid points clustered near the wall boundary, is used for

this case. The Mach 4.0 boundary layer axial velocity and

temperature profiles predicted by FDNS at the downstream boundary
are compared in Fig. 2 with similarity solutions given by
Hantzsche and Wendt in Ref. 20 which used a Prandtl number 0.7.

Figure 2 shows good agreement between the FNDS results and the

cited similarity profiles. The discrepancy in the boundary layer

thickness may be caused by different upstream flow conditions
used in the FDNS calculation. The increased calculated

temperature level outside of the boundary layer (Y/X_ef>0.011) is

due to a compression wave developed at the inflow boundary, which
reduces the freestream Mach number to 3.96. Table 3 summarizes

the Reynolds analogy factor comparisons for the four boundary
layer test cases. It is clear that the FDNS predictions are in

good agreement with the Reynolds analogy factor analytical value
of 0.8033.
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Table 3. Comparison of Predicted and Standard Reynolds

Analogy Factors (S)

Mach Number Predicted S Standard S Percent Error

4.0 0.8105 0.8033 0.90

6.0 0.8101 0.8033 0.85

8.0 0.8097 0.8033 0.80

i0.0 0.8090 0.8033 0.71

3.2 SSME Nozzle Flow Fields and Performance Calculations

3.2.1 Perfect Gas

The comparison of 2D axisymmetric perfect gas and adiabatic

wall temperature SSME thrust chamber flowfield solutions (gamma =

1.25, chamber pressure = 2935.7 psia) between the Lockheed MOC

(Ref. 24) and FDNS codes is presented in this section of the

report. Comparisons of the FDNS2D solutions for the pressure,

Mach number and temperature contours to those of the MOC are

shown in Fig. 3. Solid lines represent the FDNS solution, while

the dotted lines are the Lockheed MOC solution. It is clear that

these two solutions are in good agreement. Figure 4 shows a

comparison of predicted center-line and nozzle wall pressure

distributions. A comparison of predicted center-line Mach number

distributions is given in Fig. 5. These results illustrate good

agreement between the two methods. Figure 6 shows the axial

distribution of FDNS2D computed global mass flowrate inside the

nozzle. The overall mass error of the present solution is well

within 1 percent of the inlet mass flow rate. Also, the FDNS2D

37



SECA-TR-90-05

R

R
A
D
I
A
L

12 5

i@ @

7 5

m

SSME-PC=2935.Tpsi-IDEAL GAS-GAMMMA=l.25
_RESSURE(PSFA

2 6 8 1@ 12

u

5 @

2 5

@ @

®

FDNS2D

Lockheed MCC

X AXIAL

(a) Static Pressure Contours

Fig. 3. Perfect Gas SSME Nozzle Calculated Flowfield

Comparison, FDNS2D vs. Lockheed MOC

"' 38



SECA-TR-90-05

R

R

A

D

I

A

L

12 5

SSME-PC=2935.7psi-IDEAL GAS-GAMMMA=l.25
MACH NUMBER

i@ @

7 5

2 5

-- FDNS2D

..... ImckAeed __K>C

500@E+O I

DO@OE+O 1

500@E+01

DOeOE+O I

5000E+01

50@0{£+@ I

_)000E+@ i

5@@@I£+@ 1

_000E+@ 1

5000E+01

X AXIAL

(b) Mach Number Contours

12

Fig. 3. Perfect Gas SSME Nozzle Calculated Flowfield

Comparison, FDNS2D vs. Lockheed MOC

39



SECA-TR-90-05

R

R
A
D
I
A
L

12 5

i@ %

7 5

SSME-PC:2935.7psi-IDEAL GAS-GAMMMA:I.25

FDNS2D

..... Loc]d_eed _"'_C

6 8

X AXIAL

12

(c) Static Temperature Contours

Fig. 3. Perfect Gas SSME Nozzle Calculated Flowfield

Comparison, FDNS2D vs. Lockheed MOC

' 40



SECA-TR-90-05

.!:!i

_SME Thrust Chamber Calc_ated Pressure Comparison
FDNS2D vs MOC

1.0E+06
- I [ I I

- I" Inviscid, Perfect Gas, T = 1.25

el

(lbf/ft')

(--
(_, Nozzle Wall

, O FDNS2D

1.0E+05 ",
i

t { ......MOC
- " Axis

_, A FDNS2D

1.0E+04 _ 1 ..... 1 ..... :

Static

Pressure

1.0E+03 _
, _7--_ _ :

za

",A
"_ ,,. t [,,x

1.0E + 02 _ ---_ :

• Thr _at

1.0E+0I I

-2 0 2 4 6 8 I0 12

Axis/ Distance X (ft)

SSME Thrust Chamber Calculated Axis and Nozzle Nall Static
Pressure Comparison, FDNSZD vs MOC, Inviscid,Perfect Gas
(T = 1.25) $iInu]ation

Fig. 4 Pressure Distribution Comparisons

' 41



SECA-TR-90-05
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calculation maintains a center-line total pressure loss of less

than 1 percent for the SSMEnozzle flow computation.

3.2.2 Real Gas/Equilibrium Chemistry

The FDNS equilibrium chemistry model has been tested for a
wide range of temperature, pressure and equivalence ratios. The

resultant equilibrium species concentrations are in good

agreement with CEC (Ref. i) code calculations. Application of

this method to an SSMEnozzle flow computation for a 104% power-

level test case was performed and compared with the solutions of
the TDK/TDE code (Ref. 2) and the measured thrust. Figure 7

shows the predicted flowfield (pressure and temperature contours)
which indicate that the induced shock hits the nozzle center line

before the exit plane. Computed vs. measured thrust and Isp

comparisons are given in Table 4. Both the FDNS equilibrium

chemistry procedure and the TDE method over-estimate the thrust

and the Isp , as expected.

Comparisons of the Lockheed MOC versus the FDNS SSME

flowfield solutions for inviscid, adabatic wall temperature, and

real gas (equilibrium chemistry) assumptions for the 104% power

level case (chamber pressure = 3126.3 psia) were also made. The

real gas MOC solution and the FDNS equilibrium chemistry

solutions were in excellent agreement. The only observable

difference being that the FDNS solution has not accelerated to

the point that the MOC solution has near the

nozzle axis at the exit plane.
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Table 4. SSME Thrust Chamber Performance Predictions Compared to Rocketdyne Measurements

Parameter

Chair Press,,
Injector End
Static (psia)

Combustion

Total Temp ('R)

Propellant
Flowrate

(ib_Zse¢)

Vacuum Thrust

(Ibf)

Vacuum Specific

Impulse (ibf-sec)
ibm

Notes:

(t)

(2)
(3)

(4)

Rocketdyne
Measurements

Test 9020437

_04%

3126.25

1077.56 (I)

488,677. (2)

453.51 (2)

TDK

Viscous Pred_ctions

TDE/BLM
1 Pass (_)'(4)

3126.25

6652.03

1079.87

497,537.

460.74

TDK/BLM
1 Pass (3)'(4)

3126.25

6652.03

1079.42

495,082.

458.66

FDNS2D

V_scousp_ed_ct_ons

Equilibrium

Chemistry (4)

3126.25

6652.03

1077.68

492,822.

457.30

#

Finite Rate

Chemistry c_)

3126.25

6652.03

1077.68

490w052.

454.73

Derived from facility flowmeters excluding pressurization and overboard leakage

flowrates.

Vacuum thrust scaled from site load cell measurement by Rocketdyne.

TDE/TDK injector inlet enthalpies determined by ODE hot gas/gaseous oxygen combustion

analysis using Rocketdyne power balance program output: measured pressures and

flowrates, and calculated temperatures including heat input from regen cooling cycle.

Specified nozzle wall temperature distribution.

I
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3.2.3 Finite Rate Chemistry

Application of the FDNS2D finite rate chemistry procedure to

a 104% power level SSME nozzle flow test case was also performed

by using a H2-O 2 eight reaction system. A nine reaction system

is shown in Table 5. The last eight of these reactions were used

since they are the same as those in TDK, but the rate

coefficients used were not the same. The nine reaction system is

SECA's recommended set for H2-O 2 motors and their associated

afterburning plumes. The function of the first reaction is to

initiate combustion. Whether or not this reaction is used does

not significantly affect the predicted performance; however, its

use does correctly produce the lag in radical recombination,

which occurs in rocket nozzles. Since H20 and H 2 comprise more

than 99.9% of the flow, while finite-rate effects are adjusting

the composition, both the 8 and 9 reaction system with FDNS

compare well to the TDK results.

Figure 8 shows the predicted flowfield and comparisons with

the TDK (Ref. 2) solution in the form of static pressure and

temperature contours. Unlike the previous equilibrium chemistry

calculations, the induced shock extends to the exit plane without

intersecting the nozzle center line. The predicted nozzle thrust

and specific impulse for the finite rate chemistry case are also

compared with the measured data in Table 4.

3.2.4 SSME Nozzle Performance Calculations

A comparison of SSME thrust chamber performance predicted by

the JANNAF standard methodology (TDK code) and FDNS2D for a

specified wall temperature distribution and Rocketdyne measured

performance for engine 2028, test no. 9020437, at the 104% power
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Table 5. Reaction Kinetics Model for Hz-Oz Propellants

rate = A TB exp{E/RT}

Units: cm, gm moles, K, sec

No. Reaction A B E/R

I. H z + O z = OH + OH 1.7000E13 0 2.4070E4

2. OH + H 2 = H20 + H 2.1900E13 0 2.5900E3

3. OH + OH = O + HzO 6.0230E12 0 5.5000E2

4. O + H z = H + OH 1.8000El0 1.0 4.4800E3

5. H + 02 = O + OH 1.2200E17 -0.91 8.369OE3

6. M + O + H = OH + M 1.0000El6 0 0

7. M + O + O = 02 + M 2.5500E18 -i.0 5.939OE4

8. M + H + H = H z + M 5.0000E15 0 0

9. M + H + OH = HzO + M 8.40000E21 -2.0 0

Third body efficiencies are taken to be the same for all species.
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level is shown in Table 4. For the TDK predictions shown in

Table 4 both the two dimensional equilibrium (TDE) and two

dimensional kinetic (TDK) analyses are viscous and consider

boundary losses, [i.e., the boundary layer module (BLM), and a

specified wall temperature distribution] and also consider heat

input from the regenerative cooling cycle. The FDNS2D

predictions are viscous with the specified wall temperature

distribution taken from (Ref. 25) and account for the boundary

layer loss. Notice that all of the performance predictions

presented in Table 4 start from identical chamber pressure and

combustion total temperature. The FDNS2D equilibrium chemistry

result for vacuum specific impulse is approximately 3.8 sec.

higher than the Rocketdyne result, which is derived from test

data. The FDNS2D finite rate chemistry analysis demonstrates

that the SSME finite rate/equilibrium chemistry specific impulse

loss is approximately 2.6 sec., and the final FDNS2D result for

predicted vacuum specific impulse is within 1.2 sec. or 0.3% of

the reported Rocketdyne measurement.

3.3 Plume Flow Fields

3.3.1 SSME Nozzle and Plume

Flow in the SSME nozzle was predicted for the grid shown in

Fig. 9. The grid size was 141 x 61. The flow was assumed to be

for an ideal gas with a constant gamma of 1.25. The near

equilibrium conditions which exist in this nozzle exhibit a

variable gamma, especially near the throat, but MOC solutions run

at constant gamma with the gamma evaluated as the exit plane

value for a shifting equilibrium flow agree well with real gas

solutions. This experience was used in selecting the 1.25 value

for gamma. A solution is also shown for gamma of 1.30 to
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Fig. 9. Computational Grid for the SSME (141 x 61)
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Fig. I0. Velocity Vectors for the SSME with 7 = 1.25
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indicate sensitivity. Velocity vectors are shown in Fig. i0;

convergence histories are shown in Fig. ii. Pressure,

temperature, density, and Mach number profiles are shown in Figs.

12 and 13. These plots indicate the location of the nozzle

shocks which are in good agreement with MOCresults. A crucial
test of a CFD solution for propulsion nozzle flows is the ability

to correctly account for the differences in centerline and wall

pressure distributions. These distributions, which are shown in

Fig. 14, indicate excellent agreement with values obtained from
an MOC solution. MOC solutions are known to properly predict

such flows. The centerline Mach number profile is given in Fig.

15. Similar results are given for the gamma 1.30 solution in
Figs. 16 through 20. The change of gamma from 1.25 to 1.30 has
very little effect on the solution. The calculations were

performed using an extended k-E turbulence model with wall
functions. The turbulence model extension was made to better

simulate flows over back steps; it is represented by the last

term in Eq. (34) which is discussed in Section 2.2.2 of the

report. The velocity vector plots indicate large, realistic
velocities near the walls in both cases.

Notice that the calculated velocity vectors for both cases
indicate a non-realistic recirculation zone behind what should be

a Mach disc outside of the nozzle. Further grid refinements

and/or turbulence model improvements, which are discussed

subsequently are needed to improve the flowfield prediction past

the triple point.

a. Variable Specific Heat Ratio Effect on SSME Nozzle and Plume

Flow
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Temperature

Fig. 12. Pressure and Temperature Contours for SSME with

7 = 1.25
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MachNo.

Fig. 13. Density and Mach Number Contours for SSME with 7 = 1.25
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Temperature

Density

Fig. 17. Temperature and Density Contours for the SSME with

7 = 1.30
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Mach No.

Streamlines

Fig. 18. Mach Number Contours and Streamlines for SSME with

7 = 1.30
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To further test the gamma effect, a variable gamma test case

was also investigated. For this case, the external plume region
is considered. Four species, namely N2, Oz, H2 and H20, are

involved in the species transport computations. Only H2 and H20

are used inside the nozzle while N2 and 02 are assigned for the

freestream region. Chemical reactions are not activated here so

that the molecular weight is kept constant throughout the nozzle.

Gammaand Cp are evaluated based on temperature dependent fluid

properties. This gives a variation of gamma from 1.18 inside the

chamber to 1.255 near the nozzle exit. A grid size of 201 x 81

and a time step size of 0.001 were used for this case. The

inclusion of the variable gamma effect slows down the solution

convergence rate. Around 4000 time steps are required to obtain

a steady state solution. The predicted velocity vectors and

temperature contours are shown in Fig. 21. The Mach disc size

and location are very close to the features observed in SSME

nozzle static firings. However, there is still a small region of

reversed flow downstream of the Mach disc which inclines the Mach

disc.

One possible reason for the inclination of the predicted

Mach disc described above may be due to the dissipation scheme

employed for and the time derivative term included in the

continuity equation. To evaluate these effects, a conical nozzle

flow problem was investigated using the 4th-order dissipation

parameter reduced 5 times for the continuity equation (the

original 4th-order damping parameter is 0.01). A grid size of

201 x 81 and a time step size of 0.001 were used in the

simulation. Two cases with and without the time derivative term

included in the continuity equation were computed. Results of

these two cases are given in Figs. 22a and 22b respectively. It

is clear that the exclusion of the time derivative term in the
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Fig. 21. SSME Nozzle Flow Solution Velocity Vectors and

Temperature Contours for Variable Specific Heat Ratio
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(a) Solution With Time Derivative

Fig. 22

(b) Solution Without Time Derivative

Conical Nozzle Flow Solutions• (Laminar Flows)

66



SECA-TR-90-05

continuity equation makes the Mach disc straight and eliminates
flow recirculation downstream of the disc. The exclusion of the

time derivative term enforces steady state mass conservation and

contributes to a steady state solution of the Mach disc. This

proves that the accuracy of the mass conservation calculation

critically affects the Mach disc shape. However, this treatment
reduces but does not eliminate the recirculation zone downstream

of the Mach disc of the SSME nozzle plume.

b. Resolution of the Mach Disc

Axisymmetric flows with Mach discs are accurately predicted
with FDNS for approach Mach numbers less than or equal 3. Figure

23 shows the predictions for an exit Mach number of 2 discharge

into still air. A shadowgraph from Ref. 26 is also reproduced in
this figure at the same scale. Notice that the flowfield is

reasonable and that the disc is predicted to be in approximately

the correct location. Figure 24 presents solutions for a conical

nozzle and for separation in a conical nozzle. The shape of the
predicted disc and the subsonic flow downstream of the disc are

reasonable, although no test data are available for comparison to
this case.

For flows approaching the Mach disc which are faster than
about Mach 3, strong recirculation zones form behind the disc,

which is an erroneous result. Many of the parameters which
influence the performance of the computational algorithm were

investigated to determine what controls the calculated behavior

of the subsonic flow region behind a Mach disc. Eliminating the

unsteady term in the continuity equation when it is used as part

of the pressure correction term, improves the Mach disc

prediction. Pressure profiles and velocities for such a
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prediction are shown in Fig. 25 for the SSME at sea level.

Temperature profiles are shown in Fig. 26. Notice that there is

some recirculation behind the disc. Normal windward differencing

with FDNS allows the pressure to be central differenced.

Eliminating this feature of the algorithm also improves strong

Mach disc predictions, at the expense of slightly smearing the

shocks. When the pressure is differenced in a completely

windward fashion, the solution must be started by first forcing

all of the axial velocity components to be positive, then

relaxing this requirement. Temperature profiles and velocities

predicted using such an algorithm are shown in Fig. 27, notice

the normal shock appears to be predicted as a strong oblique

shock. The lip shock and the Mach disc predicted by this method

do not have exactly the correct shape, but the entire predicted

flowfield appears to have the proper flow direction. It is

recommended that windward differencing on the pressure be used

for describing strong Mach discs, unless it is shown that the

Mach disc structure strongly affects other critical plume

features. The recommended solution is reasonably accurate and

allows other important plume related phenomena, like radiation

and impingement, to be accurately predicted.

c. Effects of Numerical Schemes on Mach Disc Structure

It was demonstrated above that the FNDS method can predict

reasonable Mach disc structure for a conical nozzle with the same

expansion ratio and operating conditions at sea-level. However,

the same scheme failed to give a correct Mach disc shape for the

SSME contoured nozzle plume. The basic difference between the

flow features of the conical nozzle and the actual SSME nozzle is

the large radial gradients produced by the bell-shaped wall of

the SSME while the exit flow properties of the conical nozzle

remain almost I-D in nature. Several different treatments of
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numerical fluxes have been tested which are summarized below:

(a) Conservative upwind scheme based on local pressure

variations predicted with central differenced pressure.

(b) Conservative upwind scheme (including pressure

gradients) based on the local pressure variations.

(c) Scheme (a) using Mach number as the upwind parameter.

(fully upwind for supersonic flows)

(d) Scheme (b) using Mach number as the upwind parameter.

(fully upwind for supersonic flows)

(e) Fully upwind scheme for the convection terms while

keeping the pressure central differenced.

All these cases were tested using the variable gamma option

with a grid size of 201 x 81 and time step size of 0.0005. An

extended two-equation turbulence model was used in this study.

Scheme (a) is the case reported previously, which produced a

large recirculation region behind the disc. Scheme (b) improves

the predicted Mach disc structure (Fig. 28) with the drawback

that the residuals do not go down monotonically which indicates

that a steady state solution has not been reached. The flow

behind the disc is still recirculating. The entire Mach disc

disappeared when scheme (d) was applied (Fig. 29). The excessive

smearing of the induced shock inside the nozzle caused by strong

damping of scheme (d) is apparent from Fig. 29. Schemes (c) and

(e) produce essentially the same result (Fig. 30). Very good

convergence behavior was also obtained for these two cases. This

is the best result obtained among all the schemes tested.
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However, the recirculating flow feature is still predicted by

this method. The recirculating flow, which is induced by the

fast spreading of the shear layer along the slip line, causes

tilting of the Mach disc. This suggests that a more elaborate
treatment of the turbulence near the triple point may eliminate

the recirculating flow behind the Mach disc.

3.3.2 Solid Motor Flat Plate Plume Impingement

The most elementary plume property to be predicted is the
centerline pressure decay. To match measured centerline pressure

decay data, the FDNS extended k-c turbulence model was modified

in such a way that the predicted eddy viscosity was reduced as
the local Mach number increased, i.e. as the density decreased.

The cases run to establish this correlation were for a gas only

approximation to a two-phase solid rocket motor plume, hence the

results should be interpreted as qualitative only. The resulting

impact pressure prediction and comparison to measurements on a

plate at two axial stations are shown in Figs. 31a and 31b. The

corresponding Mach number profiles are shown in Figs. 32a and

32b. The implication of this prediction is that a Mach number

correction to the extended k-E model is required to suppress

turbulence at high Mach numbers. The source term for energy

dissipation in the FDNS extended k-6 model is:

p(_/K) (CIP r - C2C + C3Pr2/_)

To apply this expression to plume impingement, C 3 must be

replaced by:

C3[I.0 + 0.08M °'25]
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Such a model is needed not only to make accurate plume

predictions, but it may have a strong influence on predicted Mach

disc flows. Large viscous mixing effects and smaller artificial
damping effects, severly compromise the prediction of complex
shock structure. The artificial effects must be removed from the

prediction and the real turbulence effects must be accurately

predicted, not overpredicted. It has been previously shown that

a similar treatment of turbulence was required to describe a dump
combustor flow (Ref. 15) which exhibited a large density
reduction associated with the combustion.

3.4 Blunt Body Flow Fields

3.4.1 Supersonic Axisymmetric Blunt Body Flows

Supersonic axisymmetric flow parallel to a spherical-

cylinder configuration has been simulated for three Mach numbers

for which test data are available (Ref. 22). The computational

mesh is shown in Fig. 33 and consists of 81 by 41 points. FDNS2D

solution convergence histories for the Mach 6 and i0 cases are

shown in Fig. 34. Stagnation-line pressure and temperature plots

are shown in Fig. 35 for the Mach 6 case. Pressure, temperature,

and Mach number plots are shown in Figs. 36 and 37. Non-

dimensional surface pressure distributions are shown in Fig. 38

and compared to the test data indicated by the open circles.

Figs. 39 through 42 show similar predictions and data comparisons

for the Mach i0 case. A stagnation line pressure plot and

surface pressure distributions are shown in Fig. 43 for a Mach 20

case. These predictions are for a viscous flow using an extended

k-6 turbulence model. The flow is adiabatic and the total

temperature is conserved to within 1% throughout the flow field.
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Fig. 33. Computational Mesh for Spherical-Cylinder Blunt Body

Configuration (81 x 41)
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Pressure

Temperature

Fig. 36. Pressure and Temperature Contours for Blunt Body at

Moo= 6.05
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Mach No.

Fig. 37. Mach Number Contours for Blunt Body at Moo = 6.05
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Pressure

Temperature

Fig. 40. Pressure and Temperature Contours for Blunt Body at

Moo= 10.20
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Mach No.

Fig. 41. Mach Number Contours for Blunt Body at Moo= 10.20
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Total pressure is conserved every where except near the wall

where viscous effects cause it to be reduced. These predictions

are in excellent agreement with the test data.

Results of simulations of axisymmetric supersonic flow over
a blunt body for free stream Mach numbers of 6.05, 10.20 and 20.8

are shown in Fig. 35 through 43. To further benchmark this case,
an inviscid flow and a turbulent flow with a free stream Mach

number 8.02 were computed. Effects of the turbulence model on

the surface pressure and temperature distributions were
investigated. A grid size of 81 x 41 and time step size of 0.01

were used. For the inviscid case, total temperature loss of the

solution can be quantified. To run the FDNS code with zero

viscosity, a slip-wall boundary condition was implemented.

Convergence history for the inviscid case is shown in Fig. 44.

For turbulent flow case, only about one half of the time steps

were needed to get the same convergence. Figure 45 shows the

predicted pressure, temperature and Mach number contours for the

turbulent flow case. Figure 46 shows the surface pressure and

temperature distributions for the same case while results for the

inviscid case are given in Fig. 47. Figures 46a and 47a show

good agreement between the predictions and the measured data

(Ref. 28). Figures 46 and 47 show that although both cases give

almost identical surface pressure distributions, the turbulent

flow produces higher stagnation temperature than the inviscid

case. This is due to the viscous heat generation term in the

energy equation. Total temperature distributions on the body

surface and along the axis are shown in Fig. 48. Total

temperature loss on the wall surface is apparent near the

shoulder of the cylinder (i.e. S/Xre f = 1.57). A large total

temperature dip (16 percent of the free stream total) is also

predicted across the shock. This is a common feature of most
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(a) Pressure

(b) Temperature

Fig. 45. Turbulent Flowfield over a Spherical Cylinder at

Moo = 8.02
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(c) Mach Number

Fig. 45. Turbulent Flowfield over a Spherical Cylinder at

Moo= 8.02
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numerical schemes. The total temperature dip is sharp near the

shock but the total temperature does recover to free-stream
values downstream of the shock. Other than these features the

FDNS code conserves the total temperature reasonably well.

Therefore, the thermal analysis of the body is not compromised by
this computational feature of the solution.

Although it was not investigated as a part of this study,

flow over a backstep was previously investigated with FDNS (Ref.

18). This investigation established that the extension to the k-

E model was necessary to predict the correct reattachment length.
Both the experiments which were simulated and the predictions
indicated an unsteadiness in the flowfield downstream of the

reattachment point. Quantitative evaluation of this unsteadiness

was not attempted.

3.4.2 Supersonic Three-Dimensional Blunt Body Flows

a. 3-D Supersonic Spherical-Cylinder Blunt Body Flow

This problem represents an extension of the 2-D axisymmetric
test case described in Section 3.4.1 to the three dimensional

domain. The same free stream Mach number of 8.02 was imposed. A

grid size of 41 x 21 x 31 was used, which is very coarse compared

to the grid used in the 2-D case. A time step size of 0.01 was

also assigned. The flow is assumed to be turbulent with an

adabatic wall temperature boundary condition. The standard two-
equation turbulence model with the wall function approach was

employed. With this approach, there is no need to resolve the

boundary layer below the viscous sublayer. This is a plausible

approach for complex 3-D flow problems. A converged solution was

obtained within 600 time steps (see Fig. 49). This calculation
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took 4600 sec of CPU time on the Cray-XMP supercomputer. Figure
50 illustrates the side-view and front-view of the predicted

pressure contours. Again, about 3 to 4 grid points (in the
direction normal to the shock) are needed to resolve the shock

wave. It can be seen from Fig. 50b that an axisymmetric shock

wave is predicted as expected. Figure 51a gives a comparison

between the FDNS3D prediction and the measured data from Ref. 22.
The predicted 3-D pressure distribution is not as smooth as the

2-D case, Fig. 47a. This is due to the coarse grid used in the

longitudinal direction (only 21 grid points). However, even with

this coarse grid, good agreement for the surface pressure

distribution is shown in Fig. 51a. For the surface temperature
distribution, Fig. 51b, the 3-D case gives almost identical

results as the 2-D calculations shown in Figs. 46b and 47b.

The following problem represents a counterpart of the above

test case to study surface heat transfer characteristics. The

same free stream Mach number of 8.02 is imposed. A grid size of

38 x 45 x 41 is used (see Fig. 52), which is coarse compared to

the grids used in the 2-D spherical-cylinder simulations reported
previously. The grid wraps around 360 degrees in I-direction

with a cyclic boundary condition imposed at I = 1 and I = Imax.

A singularity line boundary condition is also applied along the

stagnation line. A time step size of 0.01 was used. The flow is

assumed to be laminar with Re = 0.23E+06 per in. A cylinder

diameter of 5.8 in. was used in the experiment (Ref. 22). The

viscosity law for blunt body flows described in Section 3.1

(based on Sutherland's formula) is employed in the simulation. A
steady-state solution was obtained in 2000 time steps which is

about 3 times greater than required for the turbulent flow case
reported previously. This is due to the slow convergence near

the wall boundary where very fine grids are used to resolve the
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(a) Side-View

(b) Front-View

Fig. 50. Pressure Contours Around the 3-D Blunt Body at

Moo= 8.02
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boundary layer. Figure 53 illustrates the side-view of the

predicted pressure and temperature contours and shows that the

solutions are symmetric as expected. Figure 54 gives comparisons
of surface pressure and Stanton number distributions between the

present prediction and the measured data from (Ref. 22). The

predicted pressure distributions show good agreement with the

measured data. For the Stanton number comparisons, only the
normalized experimental distributions are used with the

stagnation Stanton number estimated from the Fay-Riddell
correlation (i.e. St s = 0.0078). The measured stagnation Stanton

number was reported to be 0.063 which is about 8 times higher
than the Fay-Riddell estimate. With this modification to the
experimental data, Fig. 54b shows reasonable correlations between

the data and the FDNS3D predictions. Unlike the pressure
predictions, the predicted Stanton number distributions are not

smooth. This may be due to the coarse grid used in the

longitudinal direction. However, even with this coarse grid, the

FDHS3Dpredictions are generally in good agreement with the
measured data.

b. 3-D Supersonic Circular-Cylinder Blunt Body Flows

Results of 3-D supersonic flow simulations over a spherical-

cylinder blunt body for free stream Mach numbers of 6.05, 8.02,

10.20 and 20.8 are described above. Turbulent and inviscid flow

cases have shown good results for surface pressure predictions.

To further test these cases for heat transfer predictions, an

experimental case of Mach 8 flow past a 3 in. diameter circular

cylinder (Ref. 21) with a high Reynolds number (Re = 1.44E+06 per

ft.) and a laminar flow assumption has been computed. In order

to check the general performance of the 3-D version of the FDNS

code (FNDS3D), this flow problem is simulated in three
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(a) Pressure

(b) Temperature

Fig. 53. 3-D Sperical-Cylinder Blunt Body Flowfield at Moo=
8.02
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dimensions. A grid size of 21 x 45 x 41 (with more grid points

clustered near the wall) and a time step size of 0.01 was used.

Symmetric boundary conditions along the symmetry plane and the

transverse boundaries are imposed so that a two-dimensional
flowfield solution can also be obtained. The blunt body flow

viscosity law described in Section 3.1 is employed in the

computation. Around 1500 time steps are required for the

solution to reach steady state. Figure 55 shows the predicted

pressure and temperature fields. The oscillations in pressure
and temperature contours downstream of the shock are due to small

second-order damping used in the code. This feature, however,

does not affect the solution on the blunt body surface. The

predicted surface pressure and heat transfer coefficient (Stanton

number) distributions are compared with measured data (Ref. 21)

in Figs. 56a and 56b respectively. Good correlations between the
FDNS3D predictions and the test data are shown in Fig. 56. It is

worth mentioning that the stagnation-point heat transfer

coefficient estimated from the Fay and Riddell formula given

above also correlates well with the experimental data and the

FDNS3D prediction.

3.4.3 Supersonic Three-Dimensional AFE Blunt Body Flow

a. AFE Flowfield Heat Transfer Characteristics

For the AFE blunt body heat transfer analyses presented
below, the Stanton number distributions on the windward surface

of the blunt body were computed by using the solutions of the

temperature field. The fluid viscosity was calculated based on

the Sutherland's law. This implies that the thermal conductivity

follows the same law since the specific heat and the Prandtl
number were assumed to be constant. The Prandtl number was

assumed to be 0.72 which is valid for air under the test
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(a) Pressure Contours

Fig. 55.

(b) Temperature Contours

Circular-Cylinder 3-D Blunt Body Flow at Moo = 8.02
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Fig. 56.

(a) Surface Pressure Coefficient, CP-WALL
Q

0

0.0 0.5 I'.0 I'.5 2.0

S/XREF

FDNS3D

Prediction

o Experiment

(b) Heat Transfer Coefficient, Stanton No.

o

°iz_

I
%

6

0.0 1_.5 1'.0 1'.5 2.0

S/XR[F

Comparisons of Surface Pressure and Heat Transfer

Coefficients for a Circular-Cylinder Blunt Body at

Moo = 8.02

113



SECA-TR-90-05

conditions of the AFE model. The measured pressure and heat

transfer data in Ref. 23 are the basis of data comparisons for

the blunt body test cases. The viscosity at every grid point was
updated for every time step based on the solution of the

temperature field. Based on these conditions, the Stanton number
of the surface heat transfer can be written as:

St = qw/[ (pU)o(Ho - b_) ]

where:

qw = (Viscosity) * (hp - h_)/(dy * Prandtl No.)

H o = free stream total enthalpy

hp = static enthalpy at the near-wall grid point

hw = static enthalpy based on the wall temperature

dy = wall normal distance between points p and w

b. 3-D Supersonic Turbulent Flow Over an AFE Model

(for illustration only)

The FDNS3D three-dimensional flow solver has been applied to

the solution of the flow over an AFE fore-body configuration. A

mesh system with size of 37 x 50 x 40 was used for computation.

Figure 57 is an oblique view of the mesh for K = 1 (body surface)

and K = 20 (mid-way between the wall and the free stream

boundary). This configuration corresponds to a zero angle of

attack test case studied in a series of experimental

investigations of flow about an AFE model (Ref. 27). The free

stream Mach number is 5.835. An ideal gas assumption with

specific heat ratio of 1.4 was used. Even though the flow is

laminar, for the purposes of this calculation, turbulent flow is
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Y

Fig. 57. Mesh System of an AFE Model
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assumed. A time step size of 0.01 was used for numerical

integration toward a steady-state solution. A converged solution

was obtained in 1200 time steps which corresponds to about 6

hours of CPU time on the Cray-XMP supercomputer. Figure 58 gives

the predicted pressure contours around the AFE model. Strong

expansions due to the small turning radius are shown clearly

around the shoulders at the 0- degree (upper half of Fig. 58a)
and 180-degree (lower half of Fig. 58a) locations. Comparisons

of the predicted and the measured pressure coefficient (Ref. 27)

distributions on the body surface at 0-degree and 180-degree

locations are shown in Figs. 59a and 59b respectively. The

pressure is slightly over-predicted at the 180-degree location.

The FDNS3D turbulent flow results are generally in good agreement

with the measured data, even though the flow is thought to be

laminar.

c. Supersonic 3-D Laminar Flow Over an AFE Model

Simulations of supersonic turbulent flow past an AFE blunt

body in a Mach 5.8 air stream were presented in the previous

paragraph. Good comparisons between the measured and predicted

surface pressure distributions were obtained. However,

discrepancies in the previous heat transfer comparisons were

attributed to the inadequacy of the mesh system used. In order

to clarify this point, a new mesh system was constructed, using

the GWIND GRID module (see Appendix A for a description of this

grid generation package). A surface spline routine was used to

transform the original surface equations, which define the radial

location of surface points of the AFE, into a rectilinear

coordinate system. This allows a grid line to pass through the

stagnation point (from the 180-degree location to the 0-degree

location). This new mesh system consists of no grid singularity

lines and preserves much better grid orthogonality, especially
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(a) Side-View

Fig. 58.
(b) Front-View

FDNS3D Predicted Pressure Contours Around an AFE Model

at Moo= 5.835
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near the stagnation point. To provide better boundary layer
resolution, more grid points were clustered near the wall

boundary and near the region surrounding the stagnation point.

Figure 60 illustrates the 3-D mesh system. The grid size is 35 x
61 x 41 (total number of grid points is 87,535). This

configuration corresponds to the zero angle-of-attack case

presented in an experimental investigation of an AFE model (Ref.

23). The free stream Mach number is 9.741. An ideal gas
assumption with specific heat ratio of 1.4 was used. The blunt

body flow viscosity law given above was used in the computation.
The flow was assumed to be laminar with Re = 1.6405E+05. A

constant wall temperature (3.5 times the free stream value)

boundary condition was imposed. A time step size of 0.005 was

used for numerical integration to obtain a steady-state solution.

A converged solution was obtained in 1750 time steps which

corresponds to about 7.97 hours of CPU time on the Cray-XMP

supercomputer. Figure 61 gives the predicted pressure and

Stanton number contours on the symmetry plane and the surface of

the AFE model. Strong expansions due to the small turning radii

are clearly shown at the shoulders in the 0-degree and 180-degree

locations. Figure 61 also shows post-shock oscillations in the

solution. This is mainly caused by the course grid used in the

shock region. However, this does not affect the solution on the

surface. Comparisons of the predicted and the measured (Ref. 23)

pressure coefficient and Stanton number distributions along the

symmetry line of the body surface are shown in Figs. 62a and 62b,

respectively. The FDNS3D surface pressure and heat transfer

predictions are in good agreement with the measured data. A

small dip in the Stanton number distribution along the 0-degree

line is also predicted while the experimental data do not show

this effect. The reason for the difference is not yet clear.

Effects of wall temperature distributions (which were measured to

be non-uniform) may have contributed to this problem. However,
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(a) Perspective-View

Fig. 60.

(b) Side View

3-D Mesh System of the AFE Test Model

120



SECA-TR-90-05

\

(a) Pressure Contours

(b) Stanton Number Contours

Fig. 61 AFE Model Predicted Pressure and Stanton Number

Contours, 3-D Laminar Flow at Moo = 9.741
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this discrepancy is still within i0 percent of the test data

which is acceptable for engineering design purposes.

3.5 Clustered Nozzle Flow Field

The computation of a clustered nozzle flow test case

(Ref. 28), using the FDNS3D code, is presented in this section of

the report. A four-nozzle configuration was considered. Only

one eighth of the flow domain was modeled due to symmetry

boundary conditions. A grid system with mesh size of 71 x 33 x

31 was generated using an algebraic grid method. Several

iterations and adjustments to grid spacing distribution and

reductions in local grid skewness were required to obtain a

satisfactory mesh system.

The flow inlet was located at the nozzle exit where an inlet

Mach number was assigned based on the nozzle exit/throat area

ratio. A steady state flow field solution was obtained in 1500

time steps. Figure 63 illustrates the calculated velocity

vectors on two symmetry planes. Strong reversed flow is

predicted in the base region which agrees with the experimental

observations. A data comparison on the base pressure

distribution is shown in Figure 64. The predicted pressure is

somewhat high, but the centerline value is in very good agreement

with the test data. Further analyses of clustered nozzle

problems is recommended, but this study has established that FDNS

can treat this complex problem with fair accuracy.
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4.0 CONCLUSIONS

The capability of the FDNS code to solve a variety of
propulsion related problems has been amply demonstrated. New
capabilities added to the code and limitations which have been

observed in this study are summarized below:

a. Appropriate turbulence models for compressible flow problems,

which are essential for accurate simulations, have been
incorporated into FDNS. Specific models for expanding plumes and

dump combustors have been established by comparing simulations to
experimental data.

b. Ideal gas, real gas, equilibrium gas mixtures, and finite
rate gas mixtures can be described with the options currently in

FDNS. For steady state, there is an accelerated option for

performing finite rate calculations which is comparable in speed
to equilibrium solutions.

c. The Mach disc solution technique for Mach numbers greater

than 3 needs improvement. Logic to locate the triple point and

double value this point will probably reduce the smearing of the
slip line as it forms, and thus reduce unrealistic recirculation
behind the normal shock.
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5.0 RECOMMENDATIONS

The emphasis of this study was to validate and establish the

range of applicability of a general purpose CFD code. FDNS was

used for this purpose; however, now that the utility of the code

is established, methods of improving its computational speed can

be addressed. Using multigrids and vectorizing the code are

recommended for this purpose.

Although GWIND was not developed to the same extent that

FDNS was, there are some problems that require an explicit code.

Such problems should be identified, and GWIND or a code like it

should be developed for these purposes. One example, of such a

need for very large problems, is a complete simulation of the

AFE configuration.
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1.0 INTRODUCTION

The concept of this study was to apply the calculus of

variations to compressible fluid flow in order to develop

accurate, efficient computational fluid dynamics (CFD) algorithms

for production type analyses. The Phase 1 investigation revealed
that the mechanics of a variational solution involves a

predictor-corrector calculation in which a time advanced

approximation is corrected by requiring that certain constraint

equations be satisfied to obtain the final solution. SECA

determined that the time advancement step should most efficiently

be accomplished with a rigorous upwind algorithm which evaluated

wave propagation along characteristic directions. When this

upwind method was implemented, it was found that excellent

solutions were obtained without requiring additional correction

steps. The Phase 2 effort will, therefore, be devoted to

utilizing and validating the upwind, explicit algorithm (GWIND)

and to developing an upwind, implicit counterpart designed

specifically for steady state problems. This first quarterly

progress report on the Phase 2 study will describe the GWIND code
and the test cases to be used for its validation and outline the

approach to be used for developing the implicit solution

methodology.

2.0 GWIND

2.1 General Description

GWIND is a general Navier-Stokes equation solver developed

by SECA, Inc. to be used to provide solutions to complex gas

dynamics problems. GWIND currently operates in either 2-D or

axisymmetric modes with inviscid, laminar, and turbulent options

for steady or unsteady flows of ideal gas mixtures. The code is

being extended to 3 dimensions and to real gas mixtures.

GWIND consists of four modules: a geometry module, a pre-

processor, an integrator, and a graphics module. Each of the four

modules are driven by menus designed to make the module user

friendly. Since the code is still under development, research

versions reside on SECA's Acer PC and on MSFC's CRAY/IBM

mainframe. The mainframe version has been vectorized and is in

the process of being modified to reflect the latest improvements.

The current state of development for each of the modules is

presented in the following sections.

2.2 Pre-Processor

The role of the pre-processor has been expanded from

assigning boundary and initial conditions to also include

preparing runstreams for the CRAY, offering choices for the grid
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generator and integrator to be used, and providing interaction

with plotting packages. The pre-processor is used to prepare the

input and CRAY runstreams for all the GWIND modules like GRID,

DEFINE and INTEG. The GEOMETRY module not only runs the GWIND

module GRID, but also includes an interactive grid generator -

GENIE. The post-processor rearranges the data files so that

PLOTSD can be used for presenting the final computational

results. The GWIND interactive package is written in IBM TSO

language.

The pre-processor module also assigns boundary conditions to

each node, assigns initial conditions to each node which may be

either constant valued or linearly interpolated values,

establishes tables of data to be used with certain boundary

conditions, and generates tables of common nodes used to mate

regions in the integrator.

The pre-processor uses the grid generated by the geometry

module and, along with the boundary and initial conditions,

creates the geometry and initial flow field data file for input

to the integrator module.

2.3 Geometry

The internal geometry module, GRID, is an algebraic grid

generator capable of creating 2-D, axisymmetric and 3-D grids

over complex fluid flow regions. The module uses a library of

edge and surface shape functions which may be bilinearly or

trilinearly blended to obtain a body fitted coordinate system.

The shape functions currently in the module include;

straight edges, a set of fixed points, circular arcs, elliptical

arcs, parabolic arcs and helical arcs. Surface shapes available

are flat plates, cylindrical surfaces, cones, spheres, biconics

and edges of revolution.

Each edge of the region may consist of more than one shape

and each surface may consist of segments of different shapes. In

addition, intermediate edges may be imposed on any of the

surfaces to facilitate modelling complex features or the

geometry.

Other helpful features of the module are the capability to

employ uneven nodal distributions via a quadratic stretching

function and the capability to divide a complex geometry into

separate, distinct regions to be mated in the pre-processor
module.

Grids may also be provided by GENIE instead of GRID by

selecting this option in the pre-processor. Other grid package

options may be provided at this point.
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2.4 Graphics

The mainframe graphics module utilizes PLOTSD to produce

grid and contour plots of flow properties. PLOT3D uses files of

computed flow variables along _i_h internal conversions, assuming

an ideal gas, to make the plots of user selected functions. The

user may provide the converted file prior to calling PLOT3D to

obtain more general results, i.e. real gas properties. SECA can

transfer these files to its faciltiy via a modem to view the

plots on a CRT or print the figures. Currently, to make and

print such plots on MSFC's IRIS machines, a tape of the computed

data must be prepared and reloaded on the IRIS machines.

The PC graphics module is written in Microsoft's QuickBasic

and employs an Enhanced Graphics Adapter (EGA) installed on the

PC AT. The graphics module is capable of plotting the geometry

as well as flow properties such as density, pressure, Mach

number, temperature or streamlines. The grid or an outline of

the grid may be superimposed on the flow property plots. The

flow properties are plotted using up to 50 constant property

contour lines which may either be shaded in various colors

between contours or simply discrete colored lines. The EGA is

limited to sixteen colors which are repeated if more than sixteen

contours are requested.

2.5 Integrator

The integrator module offers a selection of algorithms for

solving the conservation equations. An explicit, windward

differencing algorithm is currently operational; an implicit,

windward differencing algorithm is under development. With

either option, the viscous terms are resolved separately using

conventional central differencing and will not be included in the

following discussion.

Explicit Alqorithm

The explicit windward algorithm is a finite volume flux

splitting algorithm which guarantees total conservation in the

integral sense by employing the elemental flux integrals to form

the spatial derivatives found in the conservation equations. The

derivation of the algorithm follows.

For 2-D and axisymmetric flow, the conservation equations

may be cast in the form:

Qt + Fx + Gy + o H/y = 0

Q = [p, pu, pv, PET]T

F = [pu, pu 2 + P, puv, pUHT]T
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G = [pv, puv, pv 2 + P, pVHT]T

H = [pv, puv, pv 2, pVHT]T

where t is time; x & y are Cartesian coordinates; u & v are

velocity components in the x & y directions, respectively; p is

density; P is pressure; E T is total specific internal energy; and

H T is total specific enthalpy.

The conservation equations may be transformed to local,

computational coordinates (_,T), such that A_ = AT = I in the

following manner.

(ya/J)Q t + (y° + = 0

where:

J = _x _y - _y Tx

_x = J Y_ nx = - J Y_

_y = - J x n ny = J x_

= [pV, puV + _x P/J' pvV + _y P/J, #VHT]T

= [0, O, -P/J, O] T

= (_x/J)u + (_y/J)v and V = (Tx/J)u + (Ty/J)v

The vectors F and G can be locally linearized by first

obtaining the Jacobian matrices using the formulas

0Q aQ

The mathematical treatment of the Jacobian matrices A and B

is identical, therefore by letting D represent A or B, n

represent _/J or T/J, and U = nxU + nyV, the D matrix becomes

m _____

N

0 n x ny 0

-uU + nx82 U + (1-=)un x uny - avn x an x

-vU + nye 2 vn x - _Uny U + (1-_)Vny any

U(82 - H T) HTn x - auU HTny - avU (I+_)U

where: 82 = 0.5(_-I)q 2, a = ([-1), P = _[pE T - 0.Spq 2] and
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q2 = U 2 + V 2

The D matrix was derived using the following derivatives of the

pressure:

Pp = 82' Ppu = -au, Ppv = -av, PpET = a

The eigenvalues for the matrix D are:

= [U, U, U + nC, U - nC]

where n = (nx2 + ny2) 0"5

The eigenvector matrix for D is derived by solving the

following relationship for each of the four eigenvalues.

(D - l)Qn = 0

In expanded form the above relationship becomes

-I n x ny 0

-uU+nx82 U+(l-a)Unx-I uny-.Vny =n x

-vU+ny82 V_x-_Uny U+(l-a)vny-I _ny

U(82-H T) HTnx-_UU HTny-_VU (l+a)U-I

Qn = 0

The resultant eigenvector matrix is

M D =

m m

1 0 1 1

u ny u+fixC u-fixC

v -n x V+_yC v-fiyC

q2/2 -V HT+UC/n HT-UC/n

where V = nxV - nvU, fix=nx/n, fiv=nv/n, and C is the speed of
sound. The determinant of the @ig_nvector martix is

tMD_ = 2 C 3 n/a

The inverse of M D is obtained using the standard formula
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MD-I = Mji/ MD

where Mij = (-l)i+3mi_ and mij are the minors of M D.

MD-1 = (alC 2)

Then

m

HT-q2 u v -I

VC2/an 2 nyC2/an 2 -nxC2/_n2 0

q2/4-UC/2an nx/2an-u/2 nyC/2_n-v/2 0.5

q2/4+UC/2an -(nxC/2an+u/2 ) -nyC/2an-v/2 0.5

It has been verified that MDMD -I is equal to the identity matrix.

The matrix D may be spectrally decomposed into components

corresponding to each of the eigenvalues by using the spectral

theorem. Since two of the eigenvalues are identical the

decomposdtion results in only three components. These components

are obtained by performing the following matrix multiplies

EliEelEoIMD-ID = M D U I + (U+nC) 0 + (U-nC) 0
0 1 0

0 0 I

D = D I + D 2 + D 3

D I = (= U/C 2) x

C2/a-q2/2

nxUC2/en2-uq2/2

nyUC2/an2-vq2/2

U2C2/an2-q2HT/2

u v -I

u2+ny2C2/an 2 uV-nxnyC2/en2 -u

uV-nxnyC2/an2 v2+nx2C2/an2 -v

uq2/2-nyVC2/an 2 vq2/2+nxVC2/an 2 -q2/2
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D 2 = [a(U+nC)/2C 2] x

W 1 W 2 W 3

Wl(u+fixC)

Wl(V+nyC)

WI(HT+UC/n)

W2(u+fixC)

W2(v+fiyC)

W2(HT+UC/n)

Ws(u+fixC)

W3(v+_yC)

W3(HT+UC/n)

u+fixC

V+nyc

HT+UC/n

where W 1 = (0.5q 2 - UC/an), W 2 = (nxC/an - u), and

W 3 = (nyC/an - v)

D 3 = [a(U-nC)/2C 2] ×

W 4 W 5 W 6 I

W4(u-fixC)

W4(v-fiyC)

W4(HT-UC/n)

Ws(u-fixC)

Ws(v-fiyC)

W5(HT-UC/n)

W6(u-fixC)

W6(v-nyC)

W6(HT-UC/n)

u-fixC

v-fiyC

HT-UC/n

where W 4 = (0.5q 2 + UC/_n), W 5 = -(nxC/an + u) and

W 6 = -(nyC/an + v)

The quantity DQn now becomes (D 1 + D 2 + D3)Qn where D 1 has eigen

direction U, D 2 has eigen direction U + nC and D 3 has e_gen

direction U - nC. Recall that DQ n represents either

F_ = (FI) _ + (F2) _ + (F3) _

or G_ = (G1) _ + (G2) _ + (G3) W

The components D1, D 2 and D 3 may be simplified by applying

the chain rule to replace derivatives of (PET) with derivatives
of P. An ideal gas will be assumed at this point, i.e. one which

is both thermally and calorically perfect. The relationship

between pressure and total energy becomes

P = ap(E T - 0.5 q2)

Then

Pn = a[ 0.Sq2p n - u(pU)n - v(pV)n + (PET) n ]
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Another simplification involves using the chain rule to replace

(pu) n and (PV)n with (pU) n and (pV) n . These two operations
reduce the complicated component matrices into much more

simplified forms, namely:

DiQ n = D*iQ* n, where Q* = [p, pU, pV, p]T and

D* I = U

1 0 0

nxU/n2 0 -ny/n 2

nyU/n 2 0 nx/n 2

U2/n2-q2/2 0 V/n 2

w

-i/c 2

-u/C 2

-v/C 2

-q2/2C2

U+nC

D* 2 = --
2nC

-U 1 0

-U(u+fixC) u+fixC 0

-U(V+_yC) V+_yC 0

-U(HT+UC/n) HT+UC/n 0

n/C

n(u/C+fi x)

n(v/C+fiy)

n(HT/C+U/n)

U-nC

D* 3 = --
2nC

U -1 0

U(u-fixC) -(u-fixC) 0

U(v-fiyc) -(v-fiyc) o

U(HT-UC/n) -(HT-UC/n) 0

n/C

n(u/C-fi x)

n(v/C-_y)

nHT/C-U

D*IQ* can be expanded by noting thatn

(pU) n = (pU) n

(puU) n = -uUp n + (u + 6xU)(pU) n - fiyU(pV) n

(pvU) n = -vUp n + (v + fiyU)(pU) n + _xU(pV)n

(pUHT) n = -U(H T + 0 5q2)p n + (H T + U2)(pU) n

+ UV(pV) n + TUPn/a

where U = U/n, so that
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D*IQ* n = {[pU, puU + nxP, pvU + nyP, pUHT]T} n

+ [Up n - (PU)n ] x [1, u + _x _, v + _yU, H T + _2]T

- (nPn/C2) x [U, uU" + _x C2, vU + fiyC 2, U(H T + C2)] T

D*2Q* n and D*3Q* n can also be expanded to yield

D*2Q* n = - 0.5[UPn -(PU)n ] x [I, u + nxU, v + _yU, H T + _2]T

+ (nPn/2C2) x [U, uU + nxC2, vU + nyC 2, U(H T + C2)] T

- {[UPn - (PU)n]/2C } ×

[U, uU + nxC2, vU + nyC 2, U(H T + C2)] T + (nPn/2C) ×

[i, u + nxU, v + nyU, H T + _2]T

D*3Q* n = - 0.5[UPn -(PU)n ] x [I, u + fix_, v + _yU, H T + _2]T

+ (nPn/2C2) x [U, uU + fixc2, vU + fiyC 2, U(H T + C2)] T

+ {[Up n - (PU)n]/2C } x

[U, uU + flxC2, vU + nyC 2, U(H T + C2)] T - (nPn/2C) x

[i, u + _x _, v + _yU, HT + O2]T

Components of these equations are grouped and named as follows.

F = ([pU, puU + nxP, pvU + nyP, pUHT]T} n

fl = + [UPn - (PU)n] x [i, u + nxU, v + nyU, H T + _2]T

f2 = + (nPn/C2) x [U, uU ^ + nxC2 , vU + _yC 2, U(H T + C2)] T

f3 = + {[UPn - (PU)n]/C} x [U, uU + nxC2, vU + nyC 2, U(H T + C2)] T

f4 = (nPn/C) x [I, u + nxU, v + ny6. H T + _2]T

Note that F is identical to either F_ or G_. These
H l

groupings allow the following representation of the F s (or G's).

(F1) n

(F2) n

(F3) n

= F + fl - f2

= 0.5(f 2 - fl) + 0.5(f 4 - f3)

= 0"5(f2 - fl ) - 0"5(f4 - f3)
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Again the eigen directions of F I, F 2 and F 3 are U, U + nC
and U - nC, respectively.

Once the flux components have been evaluated, the windward

algorithm determines which nodes in the element receive each of

the flux components. The windward algorithm is stated as:

F n = el(F1) n + e2(F2) n + e3(F3) n

where: e I = 1 if U _ 0

= 0 if U < 0

e 2 = 1 if U + nC > 0

= 0 if U + nC < 0

e 3 = I if U - nC > 0

0 if U - nC < 0

For supersonic flow, e I = e 2 = e3, so that

Fn = el( FI + F2 + F3 )n

= el[ F + fl + f2 + 0"5"(f2 - fl + f4 - f3 )

+ 0"5_(f2 -fl - f4 + f3 )]

= elF = el(F)n

For subsonic flow where U < nC the e's may be redefined as:

e I = 0.5(I + FI), where F I = SIGN(U)

e 2 = 0.5(1 + F2), where F 2 = SIGN(U+nC) = SIGN(n)

e 3 = 0.5(1 + F3), where F 3 = SIGN(U-nC) = SIGN(-n) = - F 2

In subsonic flow any node in the flow grid will have either e 2 or
e 3 equal to unity and the other equal to zero, therefore for any
node

F n = 0.5[(l+F1)F + Fl(fl-f 2) + F2(f4-f3)]

By simply evaluating the signs on U for supersonic flow and for U

and n for subsonic flow the algorithm automatically determines

the proper directions in which to difference the three components

of the flux vectors. The method by which the differencing is
accomplished in GWIND is described below.

GWIND employs a numbering system convention which applies to
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each element in the flow field regardless of orientation.

numbering system is detailed below.

This

Typical Element

4

°i
C 3

A 2

B

Nodes: 1 - 4

Faces: A - D

Elements do not need to be

rectangles; sketch indicates

numbering system only.

The position vector for any point in the element is
or

P = (I-_)(I-_)PI + _(l-_)P2 + _P3 + (l-_)_P4

P{ = (I-_)(P2 - P1 ) + _(P3 - P4 )

P_ = (I-_)(P4 - P1 ) + _(P3 - P2 )

i A _ = x_ y_ - x_ y_ = i/J

P = [x, y]T

In order to understand the physical interpretation of the

equations used in the algorithm, first note that the outward-

pointing normals

- N= i + Ny j

on each face of the element are:

Face _x _y

A Y2-Yl xl-x2

B y3-y 2 x2-x 3

C y4-y 3 x3-x 4

D yl-y 4 x4-x I

Evaluation of the derivatives PC and P_ at each node of the
element yields
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Node _ X_ _n X_

1 x2-xl Y2-Yl x4-xl Y4-Y1

2 x2-xl Y2-Yl x3-x2 Y3-Y2

3 x3-x4 Y3-Y4 x3-x2 Y3-Y2

4 x3-x4 Y3-Y4 x4-xl Y4-Yl

But from before

_x = 3 y_

_y = - 3 x_

so that

Node _x fy ax _y

1 - Jl NxD - J1NyD - Jl NxA - Jl NyA

2 J2 NxB J2 NyB - J2 NxA - J2 NyA

3 J3 NxB J3 NyB J3 Nxc J3 Nyc

4 - J4 NxD - J4 NyD J4 NxC J4 NyC

Therefore v_/J and v_/J are area normals at the 2 faces

associated with each node in the positive _ and _ directions. U

is the dot'product of the velocity vector and the area normal

vector. Therefore, the local computational coordinate form of

the conservation equations represents the fluxes through the

faces of the element and are, in fact, identical to the flux

integral form of the conservation equations. GWIND departs from

standard finite difference methods at this point by employing the

integral form of the equations and actually integrating the

fluxes through each element. This results in a finite volume

integral approach using a windward algorithm.

The above table reveals that _ and _v involve only the

normals on faces B and D of the typlcal el_ment while _x and Dy
only involve the normals on faces A and C. Consequently, F is

evaluated only on faces B and D while G is evaluated only on

faces A and C.

The adopted convention for the typical element, with its

numbering system for the nodes and faces relative to the _ and n

directions, dictates the following for F 2 = SIGN(n) The outward-
pointing normal for face B points in the direction of positive
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while the outward-pointing normal for face D points in the

negative C direction. Therefore,

P2 = I for nodes 2 & 3 for F_

= -1 for nodes 1 & 4 for F_

Likewise, the outward-pointing normal directions for faces A and
C dictate that

F 2 = I for nodes 3 a 4 for G_

= -1 for nodes 1 & 2 for G_

If Ua is defined as the average U in either the _ or

direction, recalling that U is the dot product of the velocity

and area normal vectors, then, since the area normal vectors on

opposite faces have opposite signs, the following is true:

F 1 = SIGN(U a) for nodes 2 a 3 for F_

= -SIGN(U a) for nodes I & 4 for F_

PI = SIGN(Ua) for nodes 3 & 4 for G_

= -SIGN(U a) for nodes i & 2 for G_

Applying the above conventions for F 1 and P2 to the equation for

F n and noting that each node on a face receives half of F n
yields:

For nodes 2 & 3 (for F_) or nodes 3 & 4 (for G_),

F + = 0.25[(I + PI)F + pl(fl - f2) + (f4 - f3)]

For the opposite nodes,

F- = 0.25[(I - F1)F - Fl(f I - f2) - (f4 - f3 )]

or

F +
= 0.25[(I ± FI)F ± Fl(f I - f2) ± (f4 - f3 )]

= 0 25F n ± 0.25(I'• iFn + B]

where

B = Fl(f I - f2) + (f4 - f3 )

The flux equation consists of a center differenced term involving

F_ or G_ only and a bias term B which is windward differenced but

sums to zero over the element, thus ensuring the integral
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conservation of the flow equations over the element.

The bias term B can be simplified using the following

groupings of parameters:

b I = FIC - U

b 2 = FlU - C

b 3 = [UPn - (#U)n]bl/C - nPnb2/C2

b 4 = [UPn - (#U)n]b 2 -nPnbl/C

Then

B= b 3

b3u + b4n x

b3v + b4_y

b3H T + b4U

The above derivation results in a finite volume, totally

conservative, windward algorithm consisting of center differenced

fluxes with a windward bias involving no time-consuming matrix

multiplies.

3.0 CHECK-OUT CASES RUN WITH GWIND

Several check out cases have been executed to verify the

GWIND code. These cases include three source flow cases and a

boundary layer case. The 2-D source flow case presented was also

presented in the final report for the Phase I SBIR, however the

results presented herein represent a significant improvement in

accuracy over the earlier results. Also included are two

axisymmetric source flow cases, one without a shock and one with

a shock in the nozzle. The boundary layer case is a solution to

the Blasius flat plate laminar flow problem.

3.1 Source Flow Cases

Source flow cases for 2-D and axisymmetric nozzles were run

for a 15 degree half cone with a inlet Mach Number of 1.24. In

each case the grid consisted of 57 nodes in the streamwise

direction and 7 nodes in the normal direction. These cases were

run on a microcomputer; they have not been run on the mainframe

yet. The results of the calculations are presented in the table

below. The parameter "Iterations" in the table indicated how many

iterations it took to lower the sum of the squares of the errors

by 5 orders of magnitude running at a CFL fraction of 0.9.
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Although the solutions are not completely obtained at these

iteration numbers, the final answers have been obtained with only

a slight smoothing of the results remaining.

SOURCE FLOW RESULTS

2-D AXI

Parameter Inlet Correct Computed Correct Computed
Answer Answer Answer Answer

Pressure 39123 12780 12771 658.6 656.4

Density .O2981 .01341 .01340 .001612 .001609

Temperature 764.8 555.6 555.4 238.1 237.7
Velocity 1681 2311 2311 3025 3026

Mach No. 1.240 2.000 2.001 4.000 4.005

Total Temp. 1000 1000 1000 1000 1000

Total Pres. 100000 100000 100050 100000 100250

Iterations 350 500

The axisymmetric source flow case above was rerun specifying

an exit static pressure of 25000, causing a normal shock to stand

in the nozzle. Although a very crude grid (57 × 7) was used in

the analysis, excellent agreement with the correct shock location

and strength were obtained, as shown in the table below.

Excellent agreement was obtained for pressure, as shown in Figure

I, with no undershooting or overshooting near the shock. The

shock was smeared over 2 elements, resulting in some ambiguity in

the values chosen to represent the upstream pressure and the
downstream Mach Number.

SOURCE FLOW SHOCK PROBLEM

Parameter Answer

Upstream Mach No.

Upstream Press.

Downstream Mach no.

Downstream Press.

D'stream Total Pr.

Exit Mach No.

Exit Pressure

Calculated

3.251 3.261

1877 1868

.4490 .4090

22482 22812

25818 25602

.215 .224

25000 25000
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Figure 1. Nozzle Shock
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3.2 LAMINAR BOUNDARY LAYER

A constant properties flat plate boundary layer was computed

and compared with the Blasius solution to verify the laminar

capabilities of GWIND. A rectangular 77 x 25 grid was used and a

correct Blasius solution was imposed on the inlet. The results

at the downstream boundary were compared to the Blasius solution

to determine if the correct profile was maintained and if the

boundary layer thickness grew at the proper rate. A plot of the

downstream results compared to the Blasius solution are presented

in Figure 2. The downstream profile agreed very well with

Blasius except two small kinks near the wall. The cause of these

kinks is st_ll under investigation.
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Figure 2. Lominor Boundary Loyer
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4.0 PRELIMINARY DESIGN FOR IMPLICIT INTEGRATOR FOR GWIND.

An implicit ADI integrator will be developed as a propulsion

and plume analyzer which is optimized for describing steady-

state, turbulent, combusting flow in moderately complex geometric

regions. An upwind, finite volume method will be used to give

good stability, accuracy and robustness characteristics. Many

numerical methods have been developed for efficiently solving

either the non-factored or factored Jacobian matrix using llne-

relaxation, LU decomposition or multi-grid techniques, etc., for

the former case and ADI solvers for the latter case. Among

these, the most well accepted approach is the ADI method due to

its robustness and computational efficiency. The advantages of

ADI are realized only when the mesh used is nearly orthogonal and

smooth. As the grid skewness increases, the ADI convergence rate

deteriorates due to increasing off-diagonal contributions. For

such skewed, complex grids, LU decomposition or multi-zone with

multi-grid approaches could be considered, although they are

slower arid require more storage. Since our ma_or goal _s to

simulate combusting systems with sophisticated turbulence models,

the ADI method is selected for this integrator development and

the grid limitations will be accepted. For numerical accuracy,

the well tested flux ddfference, second-order upwind scheme of

Roe will be adopted. Roe's scheme with a TVD flux limiter has

been reported to be fully conservative, accurate, and

computationally efficient. Other flux splitting schemes such as

Osher's and Beam-Warm_ng's are more complex to implement. It is

recognized that other codes contain many of the required

features, are available, and could be considered for use, if

modified. In general, these codes do not contain an adequate

combustion chemistry capability. The PARC code uses central

differencing and artificial damping for stability. Rai's code

uses Osher's flux splitting scheme. CFL3D uses an LU solver.

All of these codes suffer severe limitations for the intended

applications; therefore, SECA will develop an implicit, upwind,

ADI code with Roe's flux splitting scheme and with a multi-grid

capability to address steady-state, turbulent combustion flows

relative to propulsion devices and their associated plumes.

The equations previously developed serve as a staring point

in designing an implicit code, except that the third dimension

and the viscous terms must be added to the equations. This means

that H will be defined differently. Only the equation for H will

be shown to indicate how it differs and how the viscous terms
appear.
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p w

p U W - rXZ

p v w - _yz

p w w + P - Zzz

p w E T 4 w P -u rxz - v Zyz - w Zzz + qz

A transformation to computational coordinates W_ll be used,

such that (x, y, z) become (_, 7, {) and H becomes H, etc.

Roe's flux difference method will be used.

Hk+.5 = 0"5[H{QL} + H{QR)]k+0.5 - 0.5 !c{QL,QR)I (QL _ QR)j+0.5

where Q_+0.5 = Q2,j + 0"25_[(]-_)vi + (I+K)Ai]QI,j

Q_+0.5 = Ql÷3,j - 0'25¢[(3+K)vi + (3-_)Ai]Qi+I,j

K = -I full second-order upwind

= +3 second-order central

= I/3 3rd-order upwind

# = Ist-order/2nd-order switching parameter

The vector D now has inviscid and viscous parts, such that:

A = A + Av, B = B + B v, C = 6 + C v

The discretized equations become:

[I + 8 at(A_ + B n + C_)] 6Q = - 6t[(F-Fv) _ + (G-Gv) n + (H-Hv) _]

= - At R

Approximate factorization and sweeps are accomplished as

follows. The dots denote time derivatives.

I
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(I + 8 At A{)(I + 8 at B_)(I + 8 At C_) AQ = - At R

I sweep:

(I + O At A_) AQ j = - At R

J sweep:

(I + 0 At B_) AQJ = AQ _

K sweep:

(I + 8 At C_) AQ = AQ j

Qn÷1 = Qn + AQ

A preliminary flow chart for the implicit version of GWIND

is given in Figure 3.

5.0 CLOSURE

The development of a general computational tool to describe

advanced rocket motors and their associated plumes has been

initiated. An accurate and efficient explicit algorithm has been

developed as the code GWIND; an implicit counterpart of this code

Js being prepared. Additional computations employing variational

constraints to accelerate convergence are, apparently, not

required. Turbulence models are already in the code, but have

not yet been checked out. Chemistry models will be added to the
code. A schedule of test cases to evaluate the codes has been

established. Considering that this is a two year study, the

progress reported in this first quarter constitutes an

encouraging first step in providing a useful new generation of

plume codes.

I
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